

AgentPy - Agent-based modeling in Python

[image: _images/agentpy.svg]
 [https://pypi.org/project/agentpy/][image: _images/agentpy1.svg]
 [https://github.com/JoelForamitti/agentpy/blob/master/LICENSE][image: _images/agentpy2.svg]
 [https://travis-ci.com/JoelForamitti/agentpy][image: _images/5a9530f62465a3a2c8296291be1daac28fa25d97.svg]
 [https://agentpy.readthedocs.io/en/latest/?badge=latest][image: _images/badge.svg]
 [https://codecov.io/gh/JoelForamitti/agentpy][image: _images/status.svg]
 [https://doi.org/10.21105/joss.03065]AgentPy is an open-source library for the development and analysis of agent-based models in Python.
The framework integrates the tasks of model design, interactive simulations, numerical experiments,
and data analysis within a single environment. The package is optimized for interactive computing
with IPython [http://ipython.org/], IPySimulate [https://github.com/JoelForamitti/ipysimulate], and Jupyter [https://jupyter.org/].
If you have questions or ideas for improvements, please visit the
discussion forum [https://github.com/JoelForamitti/agentpy/discussions].

Quick orientation

	To get started, please take a look at Installation and Overview.

	For a simple demonstration, check out the Wealth transfer tutorial in the Model Library.

	For a detailled description of all classes and functions, refer to API Reference.

	To learn how agentpy compares with other frameworks, take a look at Comparison.

	If you are interested to contribute to the library, see Contribute.

Citation

Please cite this software as follows:

Foramitti, J., (2021). AgentPy: A package for agent-based modeling in Python.
Journal of Open Source Software, 6(62), 3065, https://doi.org/10.21105/joss.03065

Table of contents

	Installation
	Dependencies

	Development

	Overview
	Structure

	Creating models

	Agent sequences

	Environments

	Recording data

	Running a simulation

	Interactive simulations

	Multi-run experiments

	Random numbers

	Data analysis

	Visualization

	User Guides
	Interactive simulations

	Randomness and reproducibility

	Exploratory modelling and analysis (EMA)

	Model Library
	Wealth transfer

	Virus spread

	Flocking behavior

	Segregation

	Forest fire

	Button network

	API Reference
	Agent-based models

	Agents

	Sequences

	Environments

	Parameter samples

	Experiments

	Data analysis

	Visualization

	Examples

	Other

	Comparison

	Changelog
	0.1.5 (December 2021)

	0.1.4 (September 2021)

	0.1.3 (August 2021)

	0.1.2 (June 2021)

	0.1.1 (June 2021)

	0.1.0 (May 2021)

	0.0.7 (March 2021)

	0.0.6 (January 2021)

	0.0.5 (December 2020)

	0.0.4 (November 2020)

	Contribute
	Types of contributions

	How to contribute

	Pull request guidelines

	About

Indices and tables

	Index

	Search Page

Installation

To install the latest release of agentpy,
run the following command on your console:

$ pip install agentpy

Dependencies

Agentpy supports Python 3.6 and higher.
The installation includes the following packages:

	numpy [https://numpy.org] and scipy [https://docs.scipy.org/], for scientific computing

	matplotlib [https://matplotlib.org/], for visualization

	pandas [https://pandas.pydata.org], for data manipulation

	networkx [https://networkx.org/documentation/], for networks/graphs

	SALib [https://salib.readthedocs.io/], for sensitivity analysis

	joblib [https://joblib.readthedocs.io/], for parallel processing

These optional packages can further be useful in combination with agentpy:

	jupyter [https://jupyter.org/], for interactive computing

	ipysimulate [https://ipysimulate.readthedocs.io/] >= 0.2.0, for interactive simulations

	ema_workbench [https://emaworkbench.readthedocs.io/], for exploratory modeling

	seaborn [https://seaborn.pydata.org/], for statistical data visualization

Development

The most recent version of agentpy can be cloned from Github:

$ git clone https://github.com/JoelForamitti/agentpy.git

Once you have a copy of the source, you can install it with:

$ pip install -e

To include all necessary packages for development & testing, you can use:

$ pip install -e .['dev']

Overview

This section provides an overview over the main classes and
functions of AgentPy and how they are meant to be used.
For a more detailed description of each element,
please refer to the User Guides and API Reference.
Throughout this documentation, AgentPy is imported as follows:

import agentpy as ap

Structure

The basic structure of the AgentPy framework has four levels:

	The Agent is the basic building block of a model

	The environment types Grid, Space, and Network contain agents

	A Model contains agents, environments, parameters, and simulation procedures

	An Experiment can run a model multiple times with different parameter combinations

All of these classes are templates that can be customized through the creation of
sub-classes [https://docs.python.org/3/tutorial/classes.html?highlight=inheritance#inheritance]
with their own variables and methods.

Creating models

A custom agent type can be defined as follows:

class MyAgent(ap.Agent):

 def setup(self):
 # Initialize an attribute with a parameter
 self.my_attribute = self.p.my_parameter

 def agent_method(self):
 # Define custom actions here
 pass

The method Agent.setup() is meant to be overwritten
and will be called automatically after an agent’s creation.
All variables of an agents should be initialized within this method.
Other methods can represent actions that the agent will be able to take during a simulation.

All model objects (including agents, environments, and the model itself)
are equipped with the following default attributes:

	model the model instance

	id a unique identifier number for each object

	p the model’s parameters

	log the object’s recorded variables

Using the new agent type defined above,
here is how a basic model could look like:

class MyModel(ap.Model):

 def setup(self):
 """ Initiate a list of new agents. """
 self.agents = ap.AgentList(self, self.p.agents, MyAgent)

 def step(self):
 """ Call a method for every agent. """
 self.agents.agent_method()

 def update(self):
 """ Record a dynamic variable. """
 self.agents.record('my_attribute')

 def end(self):
 """ Repord an evaluation measure. """
 self.report('my_measure', 1)

The simulation procedures of a model are defined by four special methods
that will be used automatically during different parts of a simulation.

	Model.setup is called at the start of the simulation (t==0).

	Model.step is called during every time-step (excluding t==0).

	Model.update is called after every time-step (including t==0).

	Model.end is called at the end of the simulation.

If you want to see a basic model like this in action,
take a look at the Wealth transfer demonstration in the Model Library.

Agent sequences

The Sequences module provides containers for groups of agents.
The main classes are AgentList, AgentDList, and AgentSet,
which come with special methods to access and manipulate whole groups of agents.

For example, when the model defined above calls self.agents.agent_method(),
it will call the method MyAgentType.agent_method() for every agent in the model.
Similar commands can be used to set and access variables, or select subsets
of agents with boolean operators.
The following command, for example, selects all agents with an id above one:

agents.select(agents.id > 1)

Further examples can be found in Sequences
and the Virus spread demonstration model.

Environments

Environments are objects in which agents can inhabit a specific position.
A model can contain zero, one or multiple environments which agents can enter and leave.
The connection between positions is defined by the environment’s topology.
There are currently three types:

	Grid n-dimensional spatial topology with discrete positions.

	Space n-dimensional spatial topology with continuous positions.

	Network graph topology consisting of AgentNode and edges.

Applications of networks can be found in the demonstration models
Virus spread and Button network;
spatial grids in Forest fire and Segregation;
and continuous spaces in Flocking behavior.
Note that there can also be models without environments like in Wealth transfer.

Recording data

There are two ways to document data from the simulation for later analysis.

The first way is to record dynamic variables,
which can be recorded for each object (agent, environment, or model) and time-step.
They are useful to look at the dynamics of individual or aggregate objects over time
and can be documented by calling the method record() for the respective object.
Recorded variables can at run-time with the object’s log attribute.

The second way is to document reporters,
which represent summary statistics or evaluation measures of a simulation.
In contrast to variables, reporters can be stored only for the model as a whole and only once per run.
They will be stored in a separate dataframe for easy comparison over multiple runs,
and can be documented with the method Model.report().
Reporters can be accessed at run-time via Model.reporters.

Running a simulation

To perform a simulation, we initialize a new instance of our model type
with a dictionary of parameters, and then use the function Model.run().
This will return a DataDict with recorded data from the simulation.
A simple run can be prepared and executed as follows:

parameters = {
 'my_parameter':42,
 'agents':10,
 'steps':10
}

model = MyModel(parameters)
results = model.run()

A simulation proceeds as follows (see also Figure 1 below):

	The model initializes with the time-step Model.t = 0.

	Model.setup() and Model.update() are called.

	The model’s time-step is increased by 1.

	Model.step() and Model.update() are called.

	Step 2 and 3 are repeated until the simulation is stopped.

	Model.end() is called.

The simulation of a model can be stopped by one of the following two ways:

	Calling the Model.stop() during the simulation.

	Reaching the time-limit, which be defined as follows:

	Defining steps in the paramater dictionary.

	Passing steps as an argument to Model.run().

Interactive simulations

Within a Jupyter Notebook,
AgentPy models can be explored as an interactive simulation
(similar to the traditional NetLogo interface)
using ipysimulate [https://github.com/JoelForamitti/ipysimulate] and d3.js [https://d3js.org/].
For more information on this, please refer to Interactive simulations.

Multi-run experiments

The Parameter samples module provides tools to create a Sample
with multiple parameter combinations from a dictionary of ranges.
Here is an example using IntRange integer ranges:

parameters = {
 'my_parameter': 42,
 'agents': ap.IntRange(10, 20),
 'steps': ap.IntRange(10, 20)
}
sample = ap.Sample(parameters, n=5)

The class Experiment can be used to run a model multiple times.
As shown in Figure 1, it will start with the first parameter combination
in the sample and repeat the simulation for the amount of defined iterations.
After, that the same cycle is repeated for the next parameter combination.

[image: Chain of events in Model and Experiment]

Figure 1: Chain of events in Model and Experiment.

Here is an example of an experiment with the model defined above.
In this experiment, we use a sample where one parameter is kept fixed
while the other two are varied 5 times from 10 to 20 and rounded to integer.
Every possible combination is repeated 2 times, which results in 50 runs:

exp = ap.Experiment(MyModel, sample, iterations=2, record=True)
results = exp.run()

For more applied examples of experiments, check out the demonstration models
Virus spread, Button network, and Forest fire.
An alternative to the built-in experiment class is to use AgentPy models with
the EMA workbench (see Exploratory modelling and analysis (EMA)).

Random numbers

Model contains two random number generators:

	Model.random is an instance of random.Random [https://docs.python.org/3/library/random.html#random.Random]

	Model.nprandom is an instance of numpy.random.Generator [https://numpy.org/doc/stable/reference/random/generator.html#numpy.random.Generator]

The random seed for these generators can be set by defining a parameter seed.
The Sample class has an argument randomize
to control whether vary seeds over different parameter combinations.
Similarly, Experiment also has an argument randomize
to control whether to vary seeds over different iterations.
More on this can be found in Randomness and reproducibility.

Data analysis

Both Model and Experiment can be used to run a simulation,
which will return a DataDict with output data.
The output from the experiment defined above looks as follows:

>>> results
DataDict {
'info': Dictionary with 5 keys
'parameters':
 'constants': Dictionary with 1 key
 'sample': DataFrame with 2 variables and 25 rows
'variables':
 'MyAgent': DataFrame with 1 variable and 10500 rows
'reporters': DataFrame with 1 variable and 50 rows
}

All data is given in a pandas.DataFrame [https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame] and
formatted as long-form data [https://seaborn.pydata.org/tutorial/data_structure.html]
that can easily be used with statistical packages like seaborn [https://seaborn.pydata.org/].
The output can contain the following categories of data:

	info holds meta-data about the model and simulation performance.

	parameters holds the parameter values that have been used for the experiment.

	variables holds dynamic variables, which can be recorded at multiple time-steps.

	reporters holds evaluation measures that are documented only once per simulation.

	sensitivity holds calculated sensitivity measures.

The DataDict provides the following main methods to handle data:

	DataDict.save() and DataDict.load() can be used to store results.

	DataDict.arrange() generates custom combined dataframes.

	DataDict.calc_sobol() performs a Sobol sensitivity analysis.

Visualization

In addition to the Interactive simulations,
AgentPy provides the following functions for visualization:

	animate() generates an animation that can display output over time.

	gridplot() visualizes agent positions on a spatial Grid.

To see applied examples of these functions, please check out the Model Library.

User Guides

This section contains interactive notebooks with common applications of the agentpy framework.
If you are interested to add a new article to this guide, please visit Contribute.
If you are looking for examples of complete models, take a look at Model Library.
To learn how agentpy compares with other frameworks, take a look at Comparison.

Contents

	Interactive simulations

	Randomness and reproducibility

	Exploratory modelling and analysis (EMA)

Note

You can download this demonstration as a Jupyter Notebook
here

Interactive simulations

The exploration of agent-based models can often be guided through an interactive simulation interface that allows users to visualize the models dynamics and adjust parameter values while a simulation is running. Examples are the traditional interface of NetLogo [https://ccl.northwestern.edu/netlogo/], or the browser-based visualization module of Mesa [https://mesa.readthedocs.io/].

This guide shows how to create such interactive interfaces for agentpy models within a Jupyter Notebook by using the libraries IPySimulate [https://github.com/JoelForamitti/ipysimulate], ipywidgets [https://ipywidgets.readthedocs.io/] and d3.js [https://d3js.org/]. This approach is still in an early stage of development, and more features will follow in the future. Contributions are very welcome :)

[1]:

import agentpy as ap
import ipysimulate as ips

from ipywidgets import AppLayout
from agentpy.examples import WealthModel, SegregationModel

Lineplot

To begin we create an instance of the wealth transfer model [https://agentpy.readthedocs.io/en/stable/agentpy_wealth_transfer.html] (without parameters).

[2]:

model = WealthModel()

Parameters that are given as ranges will appear as interactive slider widgets. The parameter fps (frames per second) will be used automatically to indicate the speed of the simulation. The third value in the range defines the default position of the slider.

[3]:

parameters = {
 'agents': 1000,
 'steps': 100,
 'fps': ap.IntRange(1, 20, 5),
}

We then create an ipysimulate control panel with the model and our set of parameters. We further pass two variables t (time-steps) and gini to be displayed live during the simulation.

[4]:

control = ips.Control(model, parameters, variables=('t', 'gini'))

Next, we create a lineplot of the variable gini:

[5]:

lineplot = ips.Lineplot(control, 'gini')

Finally, we want to display our two widgets control and lineplot next to each other. For this, we can use the layout templates [https://ipywidgets.readthedocs.io/en/stable/examples/Layout%20Templates.html] from ipywidgets.

[6]:

AppLayout(
 left_sidebar=control,
 center=lineplot,
 pane_widths=['125px', 1, 1],
 height='400px'
)

Note that this widget is not displayed interactively if viewed in the docs. To view the widget, please download the Jupyter Notebook at the top of this page or launch this notebook as a binder. Here is a screenshot of an interactive simulation:

[image: Interactive simulation interface with a lineplot]

Scatterplot

In this second demonstration, we create an instance of the segregation model [https://agentpy.readthedocs.io/en/stable/agentpy_segregation.html]:

[7]:

model = SegregationModel()

[8]:

parameters = {
 'fps': ap.IntRange(1, 10, 5),
 'want_similar': ap.Range(0, 1, 0.3),
 'n_groups': ap.Values(2, 3, 4),
 'density': ap.Range(0, 1, 0.95),
 'size': 50,
}

[9]:

control = ips.Control(model, parameters, ('t'))
scatterplot = ips.Scatterplot(
 control,
 xy=lambda m: m.grid.positions.values(),
 c=lambda m: m.agents.group
)

[10]:

AppLayout(left_sidebar=control,
 center=scatterplot,
 pane_widths=['125px', 1, 1],
 height='400px')

Note that this widget is not displayed interactively if viewed in the docs. To view the widget, please download the Jupyter Notebook at the top of this page or launch this notebook as a binder. Here is a screenshot of an interactive simulation:

[image: Interactive simulation interface with a scatterplot]

Note

You can download this demonstration as a Jupyter Notebook
here

Randomness and reproducibility

Random numbers and stochastic processes [http://www2.econ.iastate.edu/tesfatsi/ace.htm#Stochasticity] are essential to most agent-based models. Pseudo-random number generators [https://en.wikipedia.org/wiki/Pseudorandom_number_generator] can be used to create numbers in a sequence that appears random but is actually a deterministic sequence based on an initial seed value. In other words, the generator will produce the same pseudo-random sequence over multiple runs if it is given the same
seed at the beginning. Note that is possible that the generators will draw the same number repeatedly, as illustrated in this comic strip [https://dilbert.com/strip/2001-10-25] from Scott Adams:

[image: Alt text]

[1]:

import agentpy as ap
import numpy as np
import random

Random number generators

Agentpy models contain two internal pseudo-random number generators with different features:

	Model.random is an instance of random.Random (more info here [https://realpython.com/python-random/])

	Model.nprandom is an instance of numpy.random.Generator (more info here [https://numpy.org/devdocs/reference/random/index.html])

To illustrate, let us define a model that uses both generators to draw a random integer:

[2]:

class RandomModel(ap.Model):

 def setup(self):
 self.x = self.random.randint(0, 99)
 self.y = self.nprandom.integers(99)
 self.report(['x', 'y'])
 self.stop()

If we run this model multiple times, we will likely get a different series of numbers in each iteration:

[3]:

exp = ap.Experiment(RandomModel, iterations=5)
results = exp.run()

Scheduled runs: 5
Completed: 5, estimated time remaining: 0:00:00
Experiment finished
Run time: 0:00:00.027836

[4]:

results.reporters

[4]:

 Exploratory modelling and analysis (EMA)

Note

You can download this demonstration as a Jupyter Notebook
here

Exploratory modelling and analysis (EMA)

This guide shows how to use agentpy models together with the EMA Workbench [https://emaworkbench.readthedocs.io/]. Similar to the agentpy Experiment class, this library can be used to perform experiments over different parameter combinations and multiple runs, but offers more advanced tools for parameter sampling and analysis with the aim to support decision making under deep uncertainty.

Converting an agentpy model to a function

Let us start by defining an agent-based model. Here, we use the wealth transfer model from the model library [https://agentpy.readthedocs.io/en/stable/model_library.html].

[1]:

import agentpy as ap
from agentpy.examples import WealthModel

To use the EMA Workbench, we need to convert our model to a function that takes each parameter as a keyword argument and returns a dictionary of the recorded evaluation measures.

[2]:

wealth_model = WealthModel.as_function()

[3]:

help(wealth_model)

Help on function agentpy_model_as_function in module agentpy.model:

agentpy_model_as_function(**kwargs)
 Performs a simulation of the model 'WealthModel'.

 Arguments:
 **kwargs: Keyword arguments with parameter values.

 Returns:
 dict: Reporters of the model.

Let us test out this function:

[4]:

wealth_model(agents=5, steps=5)

[4]:

{'gini': 0.32}

Using the EMA Workbench

Here is an example on how to set up an experiment with the EMA Workbench. For more information, please visit the documentation [https://emaworkbench.readthedocs.io/] of EMA Workbench.

[9]:

from ema_workbench import (IntegerParameter, Constant, ScalarOutcome,
 Model, perform_experiments, ema_logging)

[6]:

if __name__ == '__main__':

 ema_logging.LOG_FORMAT = '%(message)s'
 ema_logging.log_to_stderr(ema_logging.INFO)

 model = Model('WealthModel', function=wealth_model)
 model.uncertainties = [IntegerParameter('agents', 10, 100)]
 model.constants = [Constant('steps', 100)]
 model.outcomes = [ScalarOutcome('gini')]

 results = perform_experiments(model, 100)

performing 100 scenarios * 1 policies * 1 model(s) = 100 experiments
performing experiments sequentially
10 cases completed
20 cases completed
30 cases completed
40 cases completed
50 cases completed
60 cases completed
70 cases completed
80 cases completed
90 cases completed
100 cases completed
experiments finished

[7]:

results[0]

[7]:

 Model Library

Model Library

Welcome to the agentpy model library.
Below you can find a set of demonstrations on how the package can be used.
All of the models are provided as interactive Jupyter Notebooks [https://jupyter.org/]
that can be downloaded and experimented with.

Models

	Wealth transfer

	Virus spread

	Flocking behavior

	Segregation

	Forest fire

	Button network

 Wealth transfer

Note

You can download this demonstration as a Jupyter Notebook
here

Wealth transfer

This notebook presents a tutorial for beginners on how to create a simple agent-based model with the agentpy [https://agentpy.readthedocs.io] package. It demonstrates how to create a basic model with a custom agent type, run a simulation, record data, and visualize results.

[1]:

Model design
import agentpy as ap
import numpy as np

Visualization
import seaborn as sns

About the model

The model explores the distribution of wealth under a trading population of agents. Each agent starts with one unit of wealth. During each time-step, each agents with positive wealth randomly selects a trading partner and gives them one unit of their wealth. We will see that this random interaction will create an inequality of wealth that follows a Boltzmann distribution [http://www.phys.ufl.edu/~meisel/Boltzmann.pdf]. The original version of this model been written in
MESA [https://mesa.readthedocs.io/] and can be found here [https://mesa.readthedocs.io/en/master/tutorials/intro_tutorial.html].

Model definition

We start by defining a new type of Agent with the following methods:

	setup() is called automatically when a new agent is created and initializes a variable wealth.

	wealth_transfer() describes the agent’s behavior at every time-step and will be called by the model.

[2]:

class WealthAgent(ap.Agent):

 """ An agent with wealth """

 def setup(self):

 self.wealth = 1

 def wealth_transfer(self):

 if self.wealth > 0:

 partner = self.model.agents.random()
 partner.wealth += 1
 self.wealth -= 1

Next, we define a method to calculate the Gini Coefficient [https://en.wikipedia.org/wiki/Gini_coefficient], which will measure the inequality among our agents.

[3]:

def gini(x):

 """ Calculate Gini Coefficient """
 # By Warren Weckesser https://stackoverflow.com/a/39513799

 x = np.array(x)
 mad = np.abs(np.subtract.outer(x, x)).mean() # Mean absolute difference
 rmad = mad / np.mean(x) # Relative mean absolute difference
 return 0.5 * rmad

Finally, we define our `Model <https://agentpy.readthedocs.io/en/stable/reference_models.html>`__ with the following methods:

	setup defines how many agents should be created at the beginning of the simulation.

	step calls all agents during each time-step to perform their wealth_transfer method.

	update calculates and record the current Gini coefficient after each time-step.

	end, which is called at the end of the simulation, we record the wealth of each agent.

[4]:

class WealthModel(ap.Model):

 """ A simple model of random wealth transfers """

 def setup(self):

 self.agents = ap.AgentList(self, self.p.agents, WealthAgent)

 def step(self):

 self.agents.wealth_transfer()

 def update(self):

 self.record('Gini Coefficient', gini(self.agents.wealth))

 def end(self):

 self.agents.record('wealth')

Simulation run

To prepare, we define parameter dictionary with a random seed [https://agentpy.readthedocs.io/en/stable/guide_random.html], the number of agents, and the number of time-steps.

[5]:

parameters = {
 'agents': 100,
 'steps': 100,
 'seed': 42,
}

To perform a simulation, we initialize our model with a given set of parameters and call `Model.run() <https://agentpy.readthedocs.io/en/stable/reference_models.html>`__.

[6]:

model = WealthModel(parameters)
results = model.run()

Completed: 100 steps
Run time: 0:00:00.124199
Simulation finished

Output analysis

The simulation returns a `DataDict <https://agentpy.readthedocs.io/en/stable/reference_output.html>`__ with our recorded variables.

[7]:

results

[7]:

DataDict {
'info': Dictionary with 9 keys
'parameters':
 'constants': Dictionary with 3 keys
'variables':
 'WealthModel': DataFrame with 1 variable and 101 rows
 'WealthAgent': DataFrame with 1 variable and 100 rows
}

The output’s info provides general information about the simulation.

[8]:

results.info

[8]:

{'model_type': 'WealthModel',
 'time_stamp': '2021-05-28 09:33:50',
 'agentpy_version': '0.0.8.dev0',
 'python_version': '3.8.5',
 'experiment': False,
 'completed': True,
 'created_objects': 100,
 'completed_steps': 100,
 'run_time': '0:00:00.124199'}

To explore the evolution of inequality, we look at the recorded `DataFrame <https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html>`__ of the model’s variables.

[9]:

results.variables.WealthModel.head()

[9]:

 Virus spread

Note

You can download this demonstration as a Jupyter Notebook
here

Virus spread

This notebook presents an agent-based model that simulates the propagation of a disease through a network. It demonstrates how to use the agentpy [https://agentpy.readthedocs.io] package to create and visualize networks, use the interactive module, and perform different types of sensitivity analysis.

[1]:

Model design
import agentpy as ap
import networkx as nx
import random

Visualization
import matplotlib.pyplot as plt
import seaborn as sns
import IPython

About the model

The agents of this model are people, which can be in one of the following three conditions: susceptible to the disease (S), infected (I), or recovered (R). The agents are connected to each other through a small-world network of peers. At every time-step, infected agents can infect their peers or recover from the disease based on random chance.

Defining the model

We define a new agent type Person by creating a subclass of Agent.
This agent has two methods: setup() will be called automatically at the agent’s creation,
and being_sick() will be called by the Model.step() function.
Three tools are used within this class:

	Agent.p returns the parameters of the model

	Agent.neighbors() returns a list of the agents’ peers in the network

	random.random() [https://docs.python.org/3/library/random.html#random.random] returns a uniform random draw between 0 and 1

[2]:

class Person(ap.Agent):

 def setup(self):
 """ Initialize a new variable at agent creation. """
 self.condition = 0 # Susceptible = 0, Infected = 1, Recovered = 2

 def being_sick(self):
 """ Spread disease to peers in the network. """
 rng = self.model.random
 for n in self.network.neighbors(self):
 if n.condition == 0 and self.p.infection_chance > rng.random():
 n.condition = 1 # Infect susceptible peer
 if self.p.recovery_chance > rng.random():
 self.condition = 2 # Recover from infection

Next, we define our model VirusModel by creating a subclass of Model.
The four methods of this class will be called automatically at different steps of the simulation,
as described in Running a simulation.

[3]:

class VirusModel(ap.Model):

 def setup(self):
 """ Initialize the agents and network of the model. """

 # Prepare a small-world network
 graph = nx.watts_strogatz_graph(
 self.p.population,
 self.p.number_of_neighbors,
 self.p.network_randomness)

 # Create agents and network
 self.agents = ap.AgentList(self, self.p.population, Person)
 self.network = self.agents.network = ap.Network(self, graph)
 self.network.add_agents(self.agents, self.network.nodes)

 # Infect a random share of the population
 I0 = int(self.p.initial_infection_share * self.p.population)
 self.agents.random(I0).condition = 1

 def update(self):
 """ Record variables after setup and each step. """

 # Record share of agents with each condition
 for i, c in enumerate(('S', 'I', 'R')):
 n_agents = len(self.agents.select(self.agents.condition == i))
 self[c] = n_agents / self.p.population
 self.record(c)

 # Stop simulation if disease is gone
 if self.I == 0:
 self.stop()

 def step(self):
 """ Define the models' events per simulation step. """

 # Call 'being_sick' for infected agents
 self.agents.select(self.agents.condition == 1).being_sick()

 def end(self):
 """ Record evaluation measures at the end of the simulation. """

 # Record final evaluation measures
 self.report('Total share infected', self.I + self.R)
 self.report('Peak share infected', max(self.log['I']))

Running a simulation

To run our model, we define a dictionary with our parameters.
We then create a new instance of our model, passing the parameters as an argument,
and use the method Model.run() to perform the simulation and return it’s output.

[4]:

parameters = {
 'population': 1000,
 'infection_chance': 0.3,
 'recovery_chance': 0.1,
 'initial_infection_share': 0.1,
 'number_of_neighbors': 2,
 'network_randomness': 0.5
}

model = VirusModel(parameters)
results = model.run()

Completed: 77 steps
Run time: 0:00:00.152576
Simulation finished

Analyzing results

The simulation returns a DataDict of recorded data with dataframes:

[5]:

results

[5]:

DataDict {
'info': Dictionary with 9 keys
'parameters':
 'constants': Dictionary with 6 keys
'variables':
 'VirusModel': DataFrame with 3 variables and 78 rows
'reporters': DataFrame with 2 variables and 1 row
}

To visualize the evolution of our variables over time, we create a plot function.

[6]:

def virus_stackplot(data, ax):
 """ Stackplot of people's condition over time. """
 x = data.index.get_level_values('t')
 y = [data[var] for var in ['I', 'S', 'R']]

 sns.set()
 ax.stackplot(x, y, labels=['Infected', 'Susceptible', 'Recovered'],
 colors = ['r', 'b', 'g'])

 ax.legend()
 ax.set_xlim(0, max(1, len(x)-1))
 ax.set_ylim(0, 1)
 ax.set_xlabel("Time steps")
 ax.set_ylabel("Percentage of population")

fig, ax = plt.subplots()
virus_stackplot(results.variables.VirusModel, ax)

[image: _images/agentpy_virus_spread_16_0.png]

Creating an animation

We can also animate the model’s dynamics as follows.
The function animation_plot() takes a model instance
and displays the previous stackplot together with a network graph.
The function animate() will call this plot
function for every time-step and return an matplotlib.animation.Animation [https://matplotlib.org/api/_as_gen/matplotlib.animation.Animation.html#matplotlib.animation.Animation].

[7]:

def animation_plot(m, axs):
 ax1, ax2 = axs
 ax1.set_title("Virus spread")
 ax2.set_title(f"Share infected: {m.I}")

 # Plot stackplot on first axis
 virus_stackplot(m.output.variables.VirusModel, ax1)

