
agentpy
Release 0.0.7.dev0

Joël Foramitti

Jan 26, 2021

CONTENTS

1 Introduction 2

2 Installation 3
2.1 Dependencies . 3
2.2 Development . 3

3 Overview 4
3.1 Creating models . 4
3.2 Using agents . 5
3.3 Using environments . 6
3.4 Recording data . 6
3.5 Running a simulation . 6
3.6 Multi-run experiments . 7
3.7 Output and analysis . 7

4 User Guide 9
4.1 Stochastic processes and reproducibility . 9

5 Model Library 13
5.1 Wealth transfer . 13
5.2 Virus spread . 16
5.3 Segregation . 24
5.4 Forest fire . 28
5.5 Button network . 31

6 API Reference 34
6.1 Agents . 34
6.2 Environments . 38
6.3 Agent-based models . 44
6.4 Parameter sampling . 47
6.5 Experiments . 48
6.6 Output data . 49
6.7 Analysis . 51
6.8 Other . 52

7 Comparison 54
7.1 Agentpy vs. Mesa . 54

8 Changelog 57
8.1 0.0.7.dev0 . 57
8.2 0.0.6 (January 2021) . 57

i

8.3 0.0.5 (December 2020) . 58
8.4 0.0.4 (November 2020) . 58

9 Contribute 59
9.1 Types of contributions . 59
9.2 How to contribute . 60
9.3 Pull request guidelines . 61

10 About 62

Index 63

ii

agentpy, Release 0.0.7.dev0

CONTENTS 1

https://pypi.org/project/agentpy/
https://github.com/JoelForamitti/agentpy/blob/master/LICENSE
https://travis-ci.com/JoelForamitti/agentpy
https://agentpy.readthedocs.io/en/latest/?badge=latest
https://codecov.io/gh/JoelForamitti/agentpy

CHAPTER

ONE

INTRODUCTION

Agentpy is an open-source library for the development and analysis of agent-based models in Python. The framework
integrates the tasks of model design, numerical experiments, and data analysis within a single environment, and is
optimized for interactive computing with IPython and Jupyter. If you have questions or ideas for improvements,
please visit the discussion forum or subscribe to the agentpy mailing list.

Quick orientation

• To get started, please take a look at Installation and Overview.

• For a simple demonstration, check out the Wealth transfer tutorial in the Model Library.

• For a detailled description of all classes and functions, refer to API Reference.

• To learn how agentpy compares with other frameworks, take a look at Comparison.

Example

A screenshot of Jupyter Lab with two interactive tutorials from the model library:

2

http://ipython.org/
https://jupyter.org/
https://github.com/JoelForamitti/agentpy/discussions
https://groups.google.com/g/agentpy

CHAPTER

TWO

INSTALLATION

To install the latest release of agentpy, run the following command on your console:

$ pip install agentpy

2.1 Dependencies

Agentpy supports Python 3.6, 3.7, 3.8, and 3.9. The installation includes the following packages:

• numpy, for scientific computing

• matplotlib, for visualization

• pandas, for output dataframes

• networkx, for network analysis

• IPython and ipywidgets, for interactive computing

• SALib, for sensitivity analysis

These optional packages can further be useful in combination with agentpy, and are required in some of the tutorials:

• jupyter, for interactive computing

• seaborn, for statistical data visualization

2.2 Development

The most recent version of agentpy can be cloned from Github:

$ git clone https://github.com/JoelForamitti/agentpy.git

Once you have a copy of the source, you can install it with:

$ pip install -e

To include all necessary packages for development, you can use:

$ pip install -e .['dev']

3

https://numpy.org
https://matplotlib.org/
https://pandas.pydata.org
https://networkx.org/documentation/
https://ipython.org/
https://ipywidgets.readthedocs.io/
https://salib.readthedocs.io/
https://jupyter.org/
https://seaborn.pydata.org/

CHAPTER

THREE

OVERVIEW

This section aims to provide a rough overview over the main classes and functions of agentpy and how they are meant
to be used. For a more detailed description of each element, please refer to the API Reference. Throughout this
documentation, agentpy is imported as follows:

import agentpy as ap

3.1 Creating models

The basic framework for agent-based models consists of three levels:

1. Model, which contains agents, environments, parameters, & procedures

2. Environment, Grid, and Network, which contain agents

3. Agent, the basic building blocks of the model

All of these classes are designed to be customized through the creation of sub-classes with their own variables and
methods. A custom agent type could be defined as follows:

class MyAgentType(ap.Agent):

def setup(self):
Initialize an attribute with a parameter
self.my_attribute = self.p.my_parameter

def agent_method(self):
Define custom actions here
pass

The method Agent.setup() is meant to be overwritten and will be called after an agents’ creation. All variables
of an agents should be initialized in this method. Other methods can represent actions that the agent will be able to
take during a simulation.

We can further see that the agent comes with a built-in attribute p that allows it to access the models’ parameters. All
model objects (i.e. agents, environments, and the model itself) are equipped with such properties to access different
parts of the model:

• model returns the model instance

• model.t returns the model’s time-step

• id returns a unique identifier number for each object

• p returns an AttrDict of the models’ parameters

4

https://docs.python.org/3/tutorial/classes.html?highlight=inheritance#inheritance

agentpy, Release 0.0.7.dev0

• envs returns an EnvList of the objects’ environments

• agents (not for agents) returns an AgentList of the objects’ agents

• log returns a dict of the objects’ recorded variables

Using the new agent type defined above, here is how a basic model could look like:

class MyModel(ap.Model):

def setup(self):
""" Called at the start of the simulation """
self.add_agents(self.p.agents, MyAgentType) # Add new agents

def step(self):
""" Called at every simulation step """
self.agents.agent_method() # Call a method for every agent

def update(self):
""" Called after setup as well as after each step """
self.agents.record('my_attribute') # Record a dynamic variable

def end(self):
""" Called at the end of the simulation """
self.measure('my_measure', 1) # Record an evaluation measure

This custom model is defined by four special methods that will be used automatically during different parts of a
simulation. If you want to see a basic model like this in action, take a look at the Wealth transfer demonstration in the
Model Library.

3.2 Using agents

Agentpy comes with various tools to create, manipulate, and delete agents. The method Model.add_agents()
can be used to initialize new agents. A list of all agents in a model can be accessed through Model.agents. Lists
of agents are returned as an AgentList, which provides special features to access and manipulate the whole group
of agents.

For example, when the model defined above calls self.agents.agent_method(), it will call the method
MyAgentType.agent_method() for every agent in the model. Similar commands can be used to set and ac-
cess variables, or select subsets of agents with boolean operators. The following command, for example, would select
all agents with an id above one:

self.agents.select(self.agents.id > 1)

Further examples can be found in the AgentList reference or the Virus spread model.

3.2. Using agents 5

https://docs.python.org/3/library/stdtypes.html#dict

agentpy, Release 0.0.7.dev0

3.3 Using environments

Environments can contain agents just like the main model, and are useful if one wants to regard particular topologies
for interaction or multiple environments that can hold seperate populations of agents. Agents can be moved between
environments with the methods Agent.enter() and Agent.exit().

New environments can be created with Model.add_env(). Similar to agents, the attribute envs returns an
EnvList with special features to deal with groups of environments. There are three different types of environments:

• Environment, which simply contain agents without any topology.

• Network, in which agents can be connected via a networkx graph.

• Grid, in which agents occupy a position on a x-dimensional space.

Applied examples of networks can be found in the demonstration models Virus spread and Button network, while a
spatial grid is used in Forest fire.

3.4 Recording data

As can be seen in the model defined above, there are two main types of data in agentpy. The first are dynamic
variables, which can be stored for each object (agent, environment, or model) and time-step. They are useful to look
at the dynamics of individual or aggregate objects over time and can be recorded by calling the method record()
for the respective object.

The other type of recordable data are evaluation measures. These, in contrast, can be stored only for the model as a
whole and only once per run. They are useful as summary statistics that can be compared over multiple runs, and can
be recorded with the method Model.measure().

3.5 Running a simulation

To perform a simulation, we have to initialize a new instance of our model type with a dictionary of parameters, after
which we use the function Model.run(). This will return a DataDict with recorded data from the simulation. A
simple run could be prepared and executed as follows:

parameters = {'my_parameter':42,
'agents':10,
'steps':10, }

model = MyModel(parameters)
results = model.run()

The procedure of a simulation is as follows:

0. The model initializes with the time-step Model.t = 0.

1. Model.setup() and Model.update() are called.

2. The model’s time-step is increased by 1.

3. Model.step() and Model.update() are called.

4. Step 2 and 3 are repeated until the simulation is stopped.

5. Model.end() is called.

The simulation of a model can be stopped by one of the following three ways:

3.3. Using environments 6

agentpy, Release 0.0.7.dev0

1. Calling the Model.stop() during the simulation.

2. Reaching the time-limit, which be defined as follows:

• Defining steps in the paramater dictionary.

• Passing steps as an argument to Model.run().

3.6 Multi-run experiments

The class Experiment can be used to run a model multiple times with repeated iterations, varied parameters, and
distinct scenarios. To prepare a sample of parameters for an experiment, one can use one of the sampling functions
sample(), sample_saltelli(), or sample_discrete(). Here is an example of an experiment with the
model defined above:

parameter_ranges = {'my_parameter': 42,
'agents': (10, 20, int),
'steps': (10, 20, int)}

sample = ap.sample(parameter_ranges, n=5)

exp = ap.Experiment(MyModel, sample, iterations=2,
scenarios=('sc1','sc2'))

results = exp.run()

In this experiment, we use a sample where one parameter is kept fixed while the other two are varied 5 times from 10
to 20 and set to integer. Every possible combination is repeated 2 times, which results in 50 runs. Each run further
has one result for each of the two scenarios sc1 and sc2. For more applied examples of experiments, check out the
demonstration models Virus spread, Button network, and Forest fire.

3.7 Output and analysis

Both Model and Experiment can be used to run a simulation, which will return a DataDict with output data.
The output from the experiment defined above looks as follows:

>>> results
DataDict {
'log': Dictionary with 5 keys
'parameters':

'fixed': Dictionary with 1 key
'varied': DataFrame with 2 variables and 25 rows

'measures': DataFrame with 1 variable and 50 rows
'variables':

'MyAgentType': DataFrame with 1 variable and 10500 rows
}

The output can contain the following categories of data:

• log holds meta-data about the model and simulation performance.

• parameters holds the parameter values that have been used for the experiment.

• variables holds dynamic variables, which can be recorded at multiple time-steps.

• measures holds evaluation measures that are recoreded only once per simulation.

3.6. Multi-run experiments 7

agentpy, Release 0.0.7.dev0

This data can be stored with DataDict.save() and load(). DataDict.arrange() can further be used to
generate a specific dataframe for analysis or visualization. All data is given in a pandas.DataFrame and formatted
as long-form data, which makes it compatible to use with statistical packages like seaborn. Agentpy further provides
the following functions for analysis:

• sensitivity_sobol() performs a Sobol sensitivity analysis.

• Experiment.interactive() generates an interactive widget for parameter variation.

• animate() generates an animation that can display output over time.

• gridplot() visualizes agent positions on a spatial Grid.

To see applied examples of these functions, please check out the Model Library.

3.7. Output and analysis 8

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://seaborn.pydata.org/tutorial/data_structure.html
https://seaborn.pydata.org/

CHAPTER

FOUR

USER GUIDE

Welcome to the agentpy user guide. This section contains various articles to help with specific problems and applica-
tions. Some of these articles are provided as interactive Jupyter Notebooks that can be downloaded and experimented
with.

If you are interested to add a new article to this guide, please visit Contribute. If you are looking for examples of
complete models, take a look at Model Library.

Note: You can download this demonstration as a Jupyter Notebook here

4.1 Stochastic processes and reproducibility

Random numbers and stochastic processes are essential to many agent-based models. In Python, we can use the
pseudo-random number generator from the built-in library random.

Pseudo-random means that this module generates numbers in a sequence that appears random but is actually deter-
ministic, based on an initial seed value. In other words, the generator will produce the same pseudo-random sequence
over multiple runs if it is given the same seed at the beginning. We can define this seed to receive reproducible results
from a model with stochastic processes.

4.1.1 Generating random numbers

[1]: import agentpy as ap
import random

To illustrate, let us define a model that generates a list of ten pseudo-random numbers:

[2]: class RandomModel(ap.Model):

def setup(self):
self.random_numbers = [random.randint(0, 9) for _ in range(10)]
print(f"Model {self.p.n} generated the numbers {self.random_numbers}")

Now if we run this model multiple times, we will get a different series of numbers:

[3]: for i in range(2):
parameters = {'steps':0, 'n':i}
model = RandomModel(parameters)
results = model.run(display=False)

9

https://jupyter.org/
https://docs.python.org/3/library/random.html#module-random

agentpy, Release 0.0.7.dev0

Model 0 generated the numbers [9, 3, 3, 8, 8, 0, 1, 9, 4, 7]
Model 1 generated the numbers [0, 5, 9, 4, 6, 5, 3, 2, 2, 0]

If we want the results to be reproducible, we can define a parameter seed that will be used automatically at the
beginning of Model.run(). Now, we get the same series of numbers:

[4]: for i in range(2):
parameters = {'seed':1, 'steps':0, 'n':i}
model = RandomModel(parameters)
model.run(display=False)

Model 0 generated the numbers [2, 9, 1, 4, 1, 7, 7, 7, 6, 3]
Model 1 generated the numbers [2, 9, 1, 4, 1, 7, 7, 7, 6, 3]

4.1.2 Using multiple generators

The automatic use of the seed parameter calls the method random.seed(), which affects the default number
generator that is created as a hidden instance by the random module. For more advanced applications, we can create
seperate generators for each object, using random.Random. We can ensure that the seeds of each object follow a
controlled pseudo-random sequence by using also using seperate generator in the main model. Note that we use a
different parameter name model_seed to avoid the automatic use of the parameter seed in this case.

[5]: class RandomAgent2(ap.Agent):

def setup(self):
seed = model.seed_generator.getrandbits(128) # Get seed from model
self.random = random.Random(seed) # Create generator for this agent
self.random_numbers = [self.random.randint(0, 9) for _ in range(10)]
print(f"{self} generated the numbers {self.random_numbers}")

class RandomModel2(ap.Model):

def setup(self):
self.seed_generator = random.Random(self.p.model_seed)
self.add_agents(2, RandomAgent2)

for i in range(2):
print(f"Model {i}:")
parameters = {'model_seed': 1, 'steps': 0}
model = RandomModel2(parameters)
results = model.run(display=False)
print()

Model 0:
RandomAgent2 (Obj 1) generated the numbers [8, 7, 0, 1, 2, 3, 9, 4, 5, 0]
RandomAgent2 (Obj 2) generated the numbers [8, 1, 4, 6, 6, 3, 4, 3, 5, 1]

Model 1:
RandomAgent2 (Obj 1) generated the numbers [8, 7, 0, 1, 2, 3, 9, 4, 5, 0]
RandomAgent2 (Obj 2) generated the numbers [8, 1, 4, 6, 6, 3, 4, 3, 5, 1]

Alternatively, we could also have each agent start from the same seed:

[6]: class RandomAgent3(ap.Agent):

(continues on next page)

4.1. Stochastic processes and reproducibility 10

https://docs.python.org/3/library/random.html#random.seed
https://docs.python.org/3/library/random.html#module-random
https://docs.python.org/3/library/random.html#random.Random

agentpy, Release 0.0.7.dev0

(continued from previous page)

def setup(self):
self.random = random.Random(self.p.agent_seed)
self.random_numbers = [self.random.randint(0, 9) for _ in range(10)]
print(f"{self} generated the numbers {self.random_numbers}")

class RandomModel3(ap.Model):

def setup(self):
self.add_agents(2, RandomAgent3)

for i in range(2):
print(f"\nModel {i}:")
parameters = {'agent_seed': 1, 'steps':0, 'n':i}
model = RandomModel3(parameters)
results = model.run(display=False)

Model 0:
RandomAgent3 (Obj 1) generated the numbers [2, 9, 1, 4, 1, 7, 7, 7, 6, 3]
RandomAgent3 (Obj 2) generated the numbers [2, 9, 1, 4, 1, 7, 7, 7, 6, 3]

Model 1:
RandomAgent3 (Obj 1) generated the numbers [2, 9, 1, 4, 1, 7, 7, 7, 6, 3]
RandomAgent3 (Obj 2) generated the numbers [2, 9, 1, 4, 1, 7, 7, 7, 6, 3]

4.1.3 Modeling stochastic processes

This section presents some stochastic operations that are often used in agent-based models. To start, we prepare a
generic model with ten agents:

[7]: model = ap.Model()
agents = model.add_agents(10)
agents

[7]: AgentList [10 agents]

If we look at the agent’s ids, we see that they have been created in order:

[8]: agents.id

[8]: AttrList of attribute 'id': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

We can shuffle this list with AgentList.shuffle():

[9]: agents.shuffle().id

[9]: AttrList of attribute 'id': [5, 10, 3, 9, 6, 4, 7, 1, 8, 2]

Or create a random subset with AgentList.random():

[10]: agents.random(5).id

[10]: AttrList of attribute 'id': [6, 9, 10, 3, 5]

Both AgentList.shuffle() and AgentList.random() can take a custom generator as an argument:

4.1. Stochastic processes and reproducibility 11

agentpy, Release 0.0.7.dev0

[11]: for _ in range(2):
custom_generator = random.Random(1)
print(agents.random(5, custom_generator).id)

AttrList of attribute 'id': [3, 10, 6, 5, 9]
AttrList of attribute 'id': [3, 10, 6, 5, 9]

Note that the above selection is without repetition, i.e. every agent can only be selected once. Outside these built-in
functions of agentpy, there are many other tools that can be used for stochastic processes. For example, we can use
the methods random.choices() to make a selection with repetition and probability weights. In the following
example, agents with a higher id are more likely to be chosen:

[12]: choices = random.choices(agents, k=5, weights=agents.id)

If needed, the resulting list from such selections can be converted back into an AgentList:

[13]: ap.AgentList(choices).id

[13]: AttrList of attribute 'id': [5, 4, 5, 8, 7]

4.1.4 Further reading

• Random number generation in Python: https://realpython.com/python-random/

• Stochasticity in agent-based models: http://www2.econ.iastate.edu/tesfatsi/ace.htm#Stochasticity

• Pseudo-random number generators: https://en.wikipedia.org/wiki/Pseudorandom_number_generator

• What is random: https://www.youtube.com/watch?v=9rIy0xY99a0

4.1. Stochastic processes and reproducibility 12

https://docs.python.org/3/library/random.html#random.choices
https://realpython.com/python-random/
http://www2.econ.iastate.edu/tesfatsi/ace.htm#Stochasticity
https://en.wikipedia.org/wiki/Pseudorandom_number_generator
https://www.youtube.com/watch?v=9rIy0xY99a0

CHAPTER

FIVE

MODEL LIBRARY

Welcome to the agentpy model library. Below you can find a set of demonstrations on how the package can be used.
All of the models are provided as interactive Jupyter Notebooks that can be downloaded and experimented with.

Note: You can download this demonstration as a Jupyter Notebook here

5.1 Wealth transfer

This is a tutorial for beginners on how to create a simple agent-based model with the agentpy package. It shows the
how to create a basic model with a custom agent type, run a simulation, record data, and visualize results.

5.1.1 About the model

The model explores the distribution of wealth under a trading population of agents. We will see that their random
interaction will create an inequality of wealth that follows a Boltzmann distribution. The original version of this
model been written in MESA and can be found here.

5.1.2 Getting started

To install the latest version of agentpy, run the following command:

[1]: # !pip install agentpy

Once installed, the recommended way to import the package is as follows:

[2]: import agentpy as ap

We also import two other libraries that will be used in this demonstration.

[3]: import numpy as np # Scientific computing tools
import matplotlib.pyplot as plt # Visualization

13

https://jupyter.org/
https://agentpy.readthedocs.io
http://www.phys.ufl.edu/~meisel/Boltzmann.pdf
https://mesa.readthedocs.io/
https://mesa.readthedocs.io/en/master/tutorials/intro_tutorial.html

agentpy, Release 0.0.7.dev0

5.1.3 Model definition

We start by defining a new type of agent as a subcluss of Agent. Each agent starts with one unit of wealth. When
wealth_transfer() is called, the agent selects another agent at random and gives them one unit of their own
wealth if they have one to spare.

[4]: class WealthAgent(ap.Agent):

""" An agent with wealth """

def setup(self):

self.wealth = 1

def wealth_transfer(self):

if self.wealth > 0:

partner = self.model.agents.random()
partner.wealth += 1
self.wealth -= 1

Next, we define a method to calculate the Gini Coefficient, which will measure the inequality among our agents.

[5]: def gini(x):

""" Calculate Gini Coefficient """
By Warren Weckesser https://stackoverflow.com/a/39513799

mad = np.abs(np.subtract.outer(x, x)).mean() # Mean absolute difference
rmad = mad / np.mean(x) # Relative mean absolute difference
return 0.5 * rmad

Finally, we define our model as a subclass of Model. In Model.setup(), we define how many agents should
be created at the beginning of the simulation. In Model.step(), we define that at every time-step all agents will
perform the action wealth_transfer. In Model.update(), we calculate and record the current Gini coefficient. And
in Model.end(), we further record the wealth of each agent.

[6]: class WealthModel(ap.Model):

""" A simple model of random wealth transfers """

def setup(self):

self.add_agents(self.p.agents, WealthAgent)

def step(self):

self.agents.wealth_transfer()

def update(self):

self.record('Gini Coefficient', gini(self.agents.wealth))

def end(self):

self.agents.record('wealth')

5.1. Wealth transfer 14

agentpy, Release 0.0.7.dev0

5.1.4 Running a simulation

To run a simulation, we define a dictionary of parameters that defines the number of agents and the number of steps
that the model will run.

[7]: parameters = {
'agents': 100,
'steps': 100

}

To perform a simulation, we initialize our model with these parameters and call the method Model.run, which
returns a DataDict of our recorded variables and measures.

[8]: model = WealthModel(parameters)
results = model.run()

Completed: 100 steps
Run time: 0:00:00.183086
Simulation finished

To visualize the evolution of our Gini Coefficient, we can use pandas.DataFrame.plot().

[9]: data = results.variables.WealthModel
ax = data.plot()

And to visualize the final distribution of wealth, we can use pandas.DataFrame.hist().

[10]: data = results.variables.WealthAgent
data.hist(bins=range(data.wealth.max()+1))

plt.title('')
plt.xlabel('Wealth')
plt.ylabel('Number of agents')
plt.show()

5.1. Wealth transfer 15

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.plot.html#pandas.DataFrame.plot
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.hist.html#pandas.DataFrame.hist

agentpy, Release 0.0.7.dev0

What we get is a Boltzmann distribution. For those interested to understand this result, you can read more about it
here.

Note: You can download this demonstration as a Jupyter Notebook here

5.2 Virus spread

This notebook presents an agent-based model that simulates the propagation of a disease through a network. It demon-
strates how to use the agentpy package to create and visualize networks, use the interactive module, and perform
different types of sensitivity analysis.

[1]: # Model design
import agentpy as ap
import networkx as nx
import random

Visualization
import matplotlib.pyplot as plt
import seaborn as sns
import IPython

5.2.1 About the model

The agents of this model are people, which can be in one of the following three conditions: susceptible to the disease
(S), infected (I), or recovered (R). The agents are connected to each other through a small-world network of peers. At
every time-step, infected agents can infect their peers or recover from the disease based on random chance.

5.2. Virus spread 16

http://www.phys.ufl.edu/~meisel/Boltzmann.pdf
https://agentpy.readthedocs.io

agentpy, Release 0.0.7.dev0

5.2.2 Defining the model

We define a new agent type Person by creating a subclass of Agent. This agent has two methods: setup() will
be called automatically at the agent’s creation, and being_sick() will be called by the Model.step() function.
Three tools are used within this class:

• Agent.p returns the parameters of the model

• Agent.neighbors() returns a list of the agents’ peers in the network

• random.random() returns a uniform random draw between 0 and 1

[2]: class Person(ap.Agent):

def setup(self):
""" Initialize a new variable at agent creation. """
self.condition = 0 # Susceptible = 0, Infected = 1, Recovered = 2

def being_sick(self):
""" Spread disease to peers in the network. """
for n in self.neighbors():

if n.condition == 0 and self.p.infection_chance > random.random():
n.condition = 1 # Infect susceptible peer

if self.p.recovery_chance > random.random():
self.condition = 2 # Recover from infection

Next, we define our model VirusModel by creating a subclass of Model. The four methods will be called automat-
ically, as described in Running a simulation.

[3]: class VirusModel(ap.Model):

def setup(self):
""" Initializes the agents and network of the model. """

self.p.population = p = int(self.p.population)
Prepare a small-world network graph
graph = nx.watts_strogatz_graph(p,

self.p.number_of_neighbors,
self.p.network_randomness)

Create agents and network
self.add_agents(p, Person)
self.add_network(graph=graph, agents=self.agents)

Infect a random share of the population
I0 = int(self.p.initial_infections * self.p.population)
self.agents.random(I0).condition = 1

def update(self):
""" Records variables after setup and each step. """
Record share of agents with each condition
for i, c in enumerate(('S', 'I', 'R')):

self[c] = (len(self.agents.select(self.agents.condition == i))
/ self.p.population)

self.record(c)

Stop simulation if disease is gone
if self.I == 0:

self.stop()
(continues on next page)

5.2. Virus spread 17

https://docs.python.org/3/library/random.html#random.random

agentpy, Release 0.0.7.dev0

(continued from previous page)

def step(self):
""" Defines the models' events per simulation step. """
Call 'being_sick' for infected agents
self.agents(self.agents.condition==1).being_sick()

def end(self):
""" Records evaluation measures at the end of the simulation. """
Record final evaluation measures
self.measure('Total share infected', self.I + self.R)
self.measure('Peak share infected', max(self.log['I']))

5.2.3 Running a simulation

To run our model, we define a dictionary with our parameters. We then create a new instance of our model, passing
the parameters as an argument, and use the method Model.run() to perform the simulation and return it’s output.

[4]: parameters = {
'population': 1000,
'infection_chance': 0.3,
'recovery_chance': 0.1,
'initial_infections': 0.1,
'number_of_neighbors': 2,
'network_randomness': 0.5

}

model = VirusModel(parameters)
results = model.run()

Completed: 75 steps
Run time: 0:00:00.420014
Simulation finished

5.2.4 Analyzing results

The simulation returns a DataDict of recorded data with dataframes:

[5]: results

[5]: DataDict {
'log': Dictionary with 4 keys
'parameters': Dictionary with 6 keys
'measures': DataFrame with 2 variables and 1 row
'variables': DataFrame with 3 variables and 76 rows
}

To visualize the evolution of our variables over time, we create a plot function.

[6]: def virus_stackplot(data, ax):
""" Stackplot of people's condition over time. """
x = data.index.get_level_values('t')
y = [data[var] for var in ['I', 'S', 'R']]

sns.set()

(continues on next page)

5.2. Virus spread 18

agentpy, Release 0.0.7.dev0

(continued from previous page)

ax.stackplot(x, y, labels=['Infected', 'Susceptible', 'Recovered'],
colors = ['r', 'b', 'g'])

ax.legend()
ax.grid(False)
ax.set_xlim(0, max(1, len(x)-1))
ax.set_ylim(0, 1)
ax.set_xlabel("Time steps")
ax.set_ylabel("Percentage of population")

fig, ax = plt.subplots()
virus_stackplot(results.variables, ax)

5.2.5 Creating an animation

We can also animate the model’s dynamics as follows. The function animation_plot() takes a model instance
and displays the previous stackplot together with a network graph. The function animate() will call this plot
function for every time-step and return an matplotlib.animation.Animation.

[7]: def animation_plot(m, axs):
ax1, ax2 = axs
ax1.set_title("Virus spread")
ax2.set_title(f"Share infected: {m.I}")

Plot stackplot on first axis
virus_stackplot(m.output.variables, ax1)

Plot network on second axis
color_dict = {0:'b', 1:'r', 2:'g'}
colors = [color_dict[c] for c in m.agents.condition]
nx.draw_circular(m.env.graph, node_color=colors,

node_size=50, ax=ax2)

fig, axs = plt.subplots(1, 2, figsize=(8, 4)) # Prepare figure
parameters['population'] = 50 # Lower population for better visibility
animation = ap.animate(VirusModel(parameters), fig, axs, animation_plot)

5.2. Virus spread 19

https://matplotlib.org/api/_as_gen/matplotlib.animation.Animation.html#matplotlib.animation.Animation

agentpy, Release 0.0.7.dev0

Using Jupyter, we can display this animation directly in our notebook.

[8]: IPython.display.HTML(animation.to_jshtml())

[8]: <IPython.core.display.HTML object>

5.2.6 Interactive parameter variation

To explore the effect of different parameter values, we use sample_saltelli() to create a sample of different
parameter combinations. All parameters that are given as tuples will automatically be varied. Parameter ranges that
are given as integers will result in parameters that rounded to integers.

[9]: param_ranges = {
'population':(100, 1000),
'infection_chance':(0.1, 1.),
'recovery_chance':(0.1, 1.),
'initial_infections':0.1,
'number_of_neighbors':2,
'network_randomness':(0., 1.)

}

sample = ap.sample_saltelli(param_ranges, n=100, digits=2)

We then create an Experiment that takes a model and sample as input. To explore the different parameter values in
our sample, we can display a our virus stackplot interactively. The method Experiment.interactive() will
create widgets to to change the values of our varied parameters and call this plot after each change in parameters.

[10]: def interactive_plot(m):
fig,ax = plt.subplots()
virus_stackplot(m.output.variables, ax)

exp = ap.Experiment(VirusModel, sample)
exp.interactive(interactive_plot)

HBox(children=(VBox(children=(SelectionSlider(continuous_update=False, description=
→˓'population', layout=Layout...

5.2.7 Multi-run experiment

We can use Experiment.run() to run our model repeatedly over the whole sample.

[11]: exp = ap.Experiment(VirusModel, sample)
results = exp.run()

Scheduled runs: 1000
Completed: 1000, estimated time remaining: 0:00:00
Experiment finished
Run time: 0:01:02.737876

[12]: # To save and load data

results.save()
results = ap.load('VirusModel')

The measures in our DataDict now hold one row for each simulation run.

5.2. Virus spread 20

agentpy, Release 0.0.7.dev0

[13]: print(results)

DataDict {
'parameters':

'fixed': Dictionary with 2 keys
'varied': DataFrame with 4 variables and 1000 rows

'log': Dictionary with 5 keys
'measures': DataFrame with 2 variables and 1000 rows
}

We can use standard functions of the pandas library like pandas.DataFrame.hist() to look at summary statis-
tics.

[14]: results.measures.hist()
plt.show()

5.2.8 Sensitivity analysis

The function sensitivity_sobol() calculates Sobol sensitivity indices for the passed results and parameter
ranges, using the SAlib package.

[15]: ap.sensitivity_sobol(results, param_ranges)

[15]: DataDict {
'parameters':

'fixed': Dictionary with 2 keys
'varied': DataFrame with 4 variables and 1000 rows

'log': Dictionary with 5 keys
'measures': DataFrame with 2 variables and 1000 rows
'sensitivity': DataFrame with 2 variables and 8 rows
'sensitivity_conf': DataFrame with 2 variables and 8 rows
}

This adds two new categories to our results:

• sensitivity returns first-order sobol sensitivity indices

• sensitivity_conf returns confidence ranges for the above indices

5.2. Virus spread 21

https://salib.readthedocs.io/en/latest/api.html#sobol-sensitivity-analysis
https://salib.readthedocs.io/en/latest/basics.html

agentpy, Release 0.0.7.dev0

[16]: results.sensitivity

[16]: S1 ST
measure parameter
Total share infected population 0.001626 0.030099

infection_chance 0.797266 0.880848
recovery_chance 0.069337 0.178046
network_randomness -0.018461 0.036570

Peak share infected population 0.032734 0.038616
infection_chance 0.373695 0.548178
recovery_chance 0.540922 0.637894
network_randomness 0.032772 0.059964

We can use pandas to create a bar plot that visualizes these sensitivity indices.

[17]: def plot_sobol(results):
""" Bar plot of Sobol sensitivity indices. """

sns.set()
fig, axs = plt.subplots(1, 2, figsize=(8, 4))
SI = results.sensitivity.groupby(by='measure')
SIT = results.sensitivity_conf.groupby(by='measure')

for (key, si), (_, err), ax in zip(SI, SIT, axs):
si = si.droplevel('measure')
err = err.droplevel('measure')
si.plot.barh(yerr=err,title=key,ax=ax)
ax.set_xlim(0)

axs[0].get_legend().remove()
axs[1].set(ylabel=None, yticklabels=[])
axs[1].tick_params(left=False)
plt.tight_layout()

plot_sobol(results)

Alternatively, we can also display sensitivities by plotting average evaluation measures over our parameter variations.

5.2. Virus spread 22

agentpy, Release 0.0.7.dev0

[18]: def plot_sensitivity(results):
""" Show average simulation results for different parameter values. """

sns.set()
fig, axs = plt.subplots(2, 2, figsize=(8, 8))
axs = [i for j in axs for i in j] # Flatten list

data = results.arrange_measures()
params = results.parameters.varied.keys()

for x, ax in zip(params, axs):
for y in results.measures.columns:

sns.regplot(x=x, y=y, data=data, ax=ax, ci=99,
x_bins=15, fit_reg=False, label=y)

ax.set_ylim(0,1)
ax.set_ylabel('')
ax.legend()

plt.tight_layout()

plot_sensitivity(results)

5.2. Virus spread 23

agentpy, Release 0.0.7.dev0

Note: You can download this demonstration as a Jupyter Notebook here

5.3 Segregation

This notebook presents an agent-based model of segregation dynamics. It demonstrates how to use the agentpy pack-
age to work with a spatial grid and create animations.

[1]: # Model design
import agentpy as ap
import random

Visualization
import matplotlib.pyplot as plt

(continues on next page)

5.3. Segregation 24

https://agentpy.readthedocs.io

agentpy, Release 0.0.7.dev0

(continued from previous page)

import seaborn as sns
import IPython

5.3.1 About the model

The model is based on the NetLogo Segregation model from Uri Wilensky, who describes it as follows:

This project models the behavior of two types of agents in a neighborhood. The orange agents and blue
agents get along with one another. But each agent wants to make sure that it lives near some of “its own.”
That is, each orange agent wants to live near at least some orange agents, and each blue agent wants to
live near at least some blue agents. The simulation shows how these individual preferences ripple through
the neighborhood, leading to large-scale patterns.

5.3.2 Model definition

To start, we define our agents, who initiate with a random group and have two methods to check whether they are
happy and to move to a new location if they are not.

[2]: class Person(ap.Agent):

def setup(self):
self.happy = False
self.group = random.choice(range(self.p.n_groups))

def update_happiness(self):
""" Be happy if rate of similar neighbors is high enough. """
neighbors = self.neighbors()
similar = len([n for n in neighbors if n.group == self.group])
similar_min = self.p.want_similar * len(neighbors)
self.happy = True if similar >= similar_min else False

def find_new_home(self):
""" Move to random free spot and update free spots. """
old_spot = self.position()
new_spot = random.choice(self.model.free_spots)
self.move_to(new_spot)
self.model.free_spots.remove(new_spot)
self.model.free_spots.append(old_spot)

Next, we define our model, which consists of our agens and a spatial grid environment. At every step, unhappy people
move to a new location. After every step (update), agents update their happiness. If all agents are happy, the simulation
is stopped.

[3]: class SegregationModel(ap.Model):

def setup(self):
Create grid with agents
self.add_grid(self.p.size)
self.n_agents = int(self.p.density * (self.p.size ** 2))
self.env.add_agents(self.n_agents, Person, random=True)

Create list of free spots
self.free_spots = []

(continues on next page)

5.3. Segregation 25

http://ccl.northwestern.edu/netlogo/models/Segregation

agentpy, Release 0.0.7.dev0

(continued from previous page)

for pos, agents in self.env.items():
if len(agents) == 0:

self.free_spots.append(pos)

def step(self):
Move unhappy people
self.unhappy_people.find_new_home()

def update(self):
Update list of unhappy people
self.agents.update_happiness()
self.unhappy_people = self.agents.select(self.agents.happy == False)

Stop simulation if all are happy
if len(self.unhappy_people) == 0:

self.stop()

def get_segregation(self):
Calculate average percentage of similar neighbors
similarity = 0
for a in self.agents:

neighbors = a.neighbors()
n_neighbors = len(neighbors)
if n_neighbors > 0:

similarity += len([n for n in neighbors
if a.group == n.group]) / n_neighbors

return round(similarity / self.n_agents, 2)

def end(self):
Measure segregation at the end of the simulation
self.measure('segregation', self.get_segregation())

5.3.3 Single-run animation

Uri Wilensky explains the dynamic of the segregation model as follows:

Agents are randomly distributed throughout the neighborhood. But many agents are “unhappy” since they
don’t have enough same-color neighbors. The unhappy agents move to new locations in the vicinity. But
in the new locations, they might tip the balance of the local population, prompting other agents to leave.
If a few agents move into an area, the local blue agents might leave. But when the blue agents move to a
new area, they might prompt orange agents to leave that area.

Over time, the number of unhappy agents decreases. But the neighborhood becomes more segregated,
with clusters of orange agents and clusters of blue agents.

In the case where each agent wants at least 30% same-color neighbors, the agents end up with (on average)
70% same-color neighbors. So relatively small individual preferences can lead to significant overall
segregation.

To observe this effect in our model, we can create an animation of a single run.
To do so, we first set up an instance of our model with a chosen set of parameters.

5.3. Segregation 26

agentpy, Release 0.0.7.dev0

[4]: parameters = {
'want_similar': 0.3, # For agents to be happy
'n_groups': 2, # Number of groups
'density': 0.95, # Density of population
'size': 50, # Height and length of the grid
'steps': 50 # Maximum number of steps
}

model = SegregationModel(parameters)

We can now create an animation plot and display it directly in Jupyter as follows.

[5]: def animation_plot(model, ax):
group_grid = model.env.attribute('group')
ap.gridplot(group_grid, cmap='Accent', ax=ax)
ax.set_title(f"Segregation model \n Time-step: {model.t}, "

f"Segregation: {model.get_segregation()}")

fig, ax = plt.subplots()
animation = ap.animate(model, fig, ax, animation_plot)
IPython.display.HTML(animation.to_jshtml())

[5]: <IPython.core.display.HTML object>

5.3.4 Multi-run experiment

To explore how different individual preferences lead to different average levels of segregation, we can conduct a multi-
run experiment. To do so, we first prepare a parameter sample that includes different values for peoples’ preferences
and the population density.

[6]: parameter_ranges = dict(parameters)
parameter_ranges.update({

'want_similar': (0,0.125, 0.25, 0.375, 0.5, 0.625),
'density': (0.5, 0.7, 0.95),

})
sample = ap.sample_discrete(parameter_ranges)

We now run an experiment where we simulate each parameter combination in our sample over 5 iterations.

[7]: exp = ap.Experiment(SegregationModel, sample, iterations=5)
results = exp.run()

Scheduled runs: 90
Completed: 90, estimated time remaining: 0:00:00
Experiment finished
Run time: 0:01:38.763931

Finally, we can arrange the results from our experiment into a dataframe with measures and variable parameters, and
use the seaborn library to visualize the different segregation levels over our parameter ranges.

[8]: data = results.arrange_measures()

sns.set()
ax = sns.lineplot(data=data, x='want_similar', y='segregation', hue='density')

5.3. Segregation 27

agentpy, Release 0.0.7.dev0

Note: You can download this demonstration as a Jupyter Notebook here

5.4 Forest fire

This notebook presents an agent-based model that simulates a forest fire. It demonstrates how to use the agentpy
package to work with a spatial grid and create animations, and perform a parameter sweep.

[1]: # Model design
import agentpy as ap
import numpy as np

Visualization
import matplotlib.pyplot as plt
import seaborn as sns
import IPython

5.4.1 About the model

The model ist based on the NetLogo FireSimple model by Uri Wilensky and William Rand, who describe it as follows:

“This model simulates the spread of a fire through a forest. It shows that the fire’s chance of reaching the
right edge of the forest depends critically on the density of trees. This is an example of a common feature
of complex systems, the presence of a non-linear threshold or critical parameter. [. . .]

The fire starts on the left edge of the forest, and spreads to neighboring trees. The fire spreads in four
directions: north, east, south, and west.

The model assumes there is no wind. So, the fire must have trees along its path in order to advance. That
is, the fire cannot skip over an unwooded area (patch), so such a patch blocks the fire’s motion in that
direction.”

5.4. Forest fire 28

https://agentpy.readthedocs.io
http://ccl.northwestern.edu/netlogo/models/FireSimple

agentpy, Release 0.0.7.dev0

5.4.2 Model definition

[2]: class ForestModel(ap.Model):

def setup(self):

Create grid (forest)
forest = self.add_grid(self.p.size)

Create agents (trees)
n_trees = int(self.p.density * (self.p.size**2))
forest.add_agents(n_trees, random=True)

Initiate a dynamic variable for all trees
Condition 0: Alive, 1: Burning, 2: Burned
self.agents.condition = 0

Start a fire from the left side of the grid
unfortunate_trees = forest.get_agents([(0, self.p.size), (0, 0)])
unfortunate_trees.condition = 1

def step(self):

Select burning trees
burning_trees = self.agents.select(self.agents.condition == 1)

Spread fire
for agent in burning_trees:

for neighbor in agent.neighbors():
if neighbor.condition == 0:

neighbor.condition = 1 # Neighbor starts burning
agent.condition = 2 # Tree burns out

Stop simulation if no fire is left
if len(burning_trees) == 0: self.stop()

def end(self):

Document a measure at the end of the simulation
burned_trees = len(self.agents.select(self.agents.condition == 2))
self.measure('Percentage of burned trees',

burned_trees / len(self.agents))

5.4.3 Single-run animation

[3]: # Define parameters

parameters = {
'density': 0.6, # Percentage of grid covered by trees
'size': 50 # Height and length of the grid

}

[4]: # Create single-run animation with custom colors

def animation_plot(model, ax):

(continues on next page)

5.4. Forest fire 29

agentpy, Release 0.0.7.dev0

(continued from previous page)

attr_grid = model.env.attribute('condition', empty=3)
color_dict = {0:'#7FC97F', 1:'#d62c2c', 2:'#e5e5e5', 3:'#d5e5d5'}
ap.gridplot(attr_grid, ax=ax, color_dict=color_dict, convert=True)
ax.set_title(f"Simulation of a forest fire\n"

f"Time-step: {model.t}, Trees left: "
f"{len(model.agents.select(model.agents.condition == 0))}")

fig, ax = plt.subplots()
model = ForestModel(parameters)
animation = ap.animate(model, fig, ax, animation_plot)
IPython.display.HTML(animation.to_jshtml())

[4]: <IPython.core.display.HTML object>

5.4.4 Parameter sweep

[5]: # Prepare parameter sample
Arranges 30 values for density from 0.1 to 1

parameter_ranges = {
'density': (0.2,0.6),
'size': 100
}

sample = ap.sample(parameter_ranges, n=30)

[6]: # Perform experiment
Repeats simulation 30 times for each value of density

exp = ap.Experiment(ForestModel, sample, iterations=30)
results = exp.run()

Scheduled runs: 900
Completed: 900, estimated time remaining: 0:00:00
Experiment finished
Run time: 0:04:52.087680

[7]: # To save and load data

results.save()
results = ap.load('ForestModel')

[8]: # Plot sensitivity
Every point shows average over 50 runs

data = results.arrange_measures() # Create plotting data

sns.set()
ax = sns.lineplot(data=data, x='density', y='Percentage of burned trees')

5.4. Forest fire 30

agentpy, Release 0.0.7.dev0

Note: You can download this demonstration as a Jupyter Notebook here

5.5 Button network

This notebook presents an agent-based model of randomly connecting buttons. It demonstrates how to use the agentpy
package to work with networks and visualize averaged time-series for discrete parameter samples.

[1]: # Model design
import agentpy as ap
import networkx as nx
import random

Visualization
import seaborn as sns

5.5.1 About the model

This model is based on the Agentbase Button model by Wybo Wiersma and the following analogy from Stuart Kauff-
man:

“Suppose you take 10,000 buttons and spread them out on a hardwood floor. You have a large spool of
red thread. Now, what you do is you pick up a random pair of buttons and you tie them together with a
piece of red thread. Put them down and pick up another random pair of buttons and tie them together with
a red thread, and you just keep doing this. Every now and then lift up a button and see how many buttons
you’ve lifted with your first button. A connective cluster of buttons is called a cluster or a component.
When you have 10,000 buttons and only a few threads that tie them together, most of the times you’d pick
up a button you’ll pick up a single button.

As the ratio of threads to buttons increases, you’re going to start to get larger clusters, three or four buttons
tied together; then larger and larger clusters. At some point, you will have a number of intermediate
clusters, and when you add a few more threads, you’ll have linked up the intermediate-sized clusters into
one giant cluster.

5.5. Button network 31

https://agentpy.readthedocs.io
http://agentbase.org/model.html?f4c4388138450bdf9732
http://www.pbs.org/lifebeyondearth/resources/intkauffmanpop.html
http://www.pbs.org/lifebeyondearth/resources/intkauffmanpop.html

agentpy, Release 0.0.7.dev0

So that if you plot on an axis, the ratio of threads to buttons: 10,000 buttons and no threads; 10,000 buttons
and 5,000 threads; and so on, you’ll get a curve that is flat, and then all of a sudden it shoots up when you
get this giant cluster. This steep curve is in fact evidence of a phase transition.

If there were an infinite number of threads and an infinite number of buttons and one just tuned the ratios,
this would be a step function; it would come up in a sudden jump. So it’s a phase transition like ice
freezing.

Now, the image you should take away from this is if you connect enough buttons all of a sudden they all
go connected. To think about the origin of life, we have to think about the same thing.”

5.5.2 Model definition

[2]: # Define the model

class ButtonModel(ap.Model):

def setup(self):

Create a graph with n agents
self.buttons = self.add_network()
self.buttons.add_agents(self.p.n)
self.threads = 0

def update(self):

Record size of the biggest cluster
clusters = nx.connected_components(self.buttons.graph)
max_cluster_size = max([len(g) for g in clusters]) / self.p.n
self.record('max_cluster_size', max_cluster_size)

Record threads to button ratio
self.record('threads_to_button', self.threads / self.p.n)

def step(self):

Create random edges based on parameters
for _ in range(int(self.p.n * self.p.speed)):

self.buttons.graph.add_edge(*self.agents.random(2))
self.threads += 1

5.5.3 Multi-run experiment

[3]: # Define parameter ranges
parameter_ranges = {

'steps': 30, # Number of simulation steps
'speed': 0.05, # Speed of connections per step
'n': (100, 1000, 10000) # Number of agents

}

Create sample for different values of n
sample = ap.sample_discrete(parameter_ranges)

Keep dynamic variables
exp = ap.Experiment(ButtonModel, sample, iterations=25, record=True)

(continues on next page)

5.5. Button network 32

agentpy, Release 0.0.7.dev0

(continued from previous page)

Perform 75 seperate simulations (3 parameter combinations * 25 repetitions)
results = exp.run()

Scheduled runs: 75
Completed: 75, estimated time remaining: 0:00:00
Experiment finished
Run time: 0:00:59.906876

[4]: # Plot averaged time-series for discrete parameter samples

sns.set()
data = results.arrange_variables()
ax = sns.lineplot(data=data, x='threads_to_button', y='max_cluster_size', hue='n')

5.5. Button network 33

CHAPTER

SIX

API REFERENCE

6.1 Agents

class Agent(model, **kwargs)
Individual agent of an agent-based model.

This class can be used as a parent class for custom agent types. All agentpy model objects call the method
setup() after creation, and can access class attributes like dictionary items. To add new agents to a model,
use Model.add_agents() or Environment.add_agents().

Parameters

• model (Model) – Instance of the current model.

• **kwargs – Will be forwarded to Agent.setup().

Variables

• model (Model) – Model instance.

• p (AttrDict) – Model parameters.

• envs (EnvList) – Environments of the agent.

• log (dict) – Recorded variables of the agent.

• id (int) – Unique identifier of the agent.

delete()
Remove agent from all environments and the model.

enter(env)
Adds agent to passed environment.

Parameters env (int or Environment, optional) – Instance or id of environment
that should be used. If none is given, the first environment in Agent.envs is used.

property env
The objects first environment.

exit(env=None)
Removes agent from chosen environment.

Parameters env (int or Environment, optional) – Instance or id of environment
that should be used. If none is given, the first environment in Agent.envs is used.

move_by(path, env=None)
Changes the agents’ location in the selected environment, relative to the current position.

Parameters

34

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

agentpy, Release 0.0.7.dev0

• path (list of int) – Relative change of position.

• env (int or Environment, optional) – Instance or id of environment that
should be used. Must have topology ‘grid’. If none is given, the first environment of
that topology in Agent.envs is used.

move_to(position, env=None)
Changes the agents’ location in the selected environment.

Parameters

• position (list of int) – Position to move to.

• env (int or Environment, optional) – Instance or id of environment that
should be used. Must have topology ‘grid’. If none is given, the first environment of
that topology in Agent.envs is used.

neighbors(env=None, distance=1, diagonal=True)
Returns the agents’ neighbor’s from an environment, by calling the environments neighbors() func-
tion.

Parameters

• env (int or Environment, optional) – Instance or id of environment that
should be used. Must have topology ‘grid’ or ‘network’. If none is given, the first en-
vironment of that topology in Agent.envs is used.

• distance (int, optional) – Distance from agent in which to look for neighbors.

• diagonal (bool, optional) – Whether to include diagonal neighbors (only for
Grid).

Returns Neighbors of the agent.

Return type AgentList

position(env=None)
Returns the agents’ position from a grid.

Parameters env (int or Environment, optional) – Instance or id of environment
that should be used. Must have topology ‘grid’. If none is given, the first environment of that
topology in Agent.envs is used.

record(var_keys, value=None)
Records an objects variables.

Parameters

• var_keys (str or list of str) – Names of the variables to be recorded.

• value (optional) – Value to be recorded. The same value will be used for all var_keys.
If none is given, the values of object attributes with the same name as each var_key will
be used.

6.1. Agents 35

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

agentpy, Release 0.0.7.dev0

Examples

Record the existing attributes x and y of an object a:

a.record(['x', 'y'])

Record a variable z with the value 1 for an object a:

a.record('z', 1)

Record all variables of an object:

a.record(a.var_keys)

setup(**kwargs)
This empty method is called automatically at the objects’ creation. Can be overwritten in custom sub-
classes to define initial attributes and actions.

Parameters **kwargs – Keyword arguments that have been passed to Agent or Model.
add_agents(). If the original setup method is used, they will be set as attributes of the
object.

Examples

The following setup initializes an object with three variables:

def setup(self, y):
self.x = 0 # Value defined locally
self.y = y # Value defined in kwargs
self.z = self.p.z # Value defined in parameters

property type
Class name of the object (str).

property var_keys
The object’s variables (list of str).

class AgentList(iterable=(), /)
List of agents.

Attribute calls and assignments are applied to all agents and return an AttrList with attributes of each agent.
This also works for method calls, which returns a list of return values. Arithmetic operators can further be used
to manipulate agent attributes, and boolean operators can be used to filter list based on agent attributes.

Examples

Prepare an AgentList with three agents:

>>> model = ap.Model()
>>> agents = model.add_agents(3)
>>> agents
AgentList [3 agents]

The assignment operator can be used to set a variable for each agent. When the variable is called, an AttrList
is returned:

6.1. Agents 36

agentpy, Release 0.0.7.dev0

>>> agents.x = 1
>>> agents.x
AttrList of attribute 'x': [1, 1, 1]

One can also set different variables for each agent by passing another AttrList:

>>> agents.y = ap.AttrList([1, 2, 3])
>>> agents.y
AttrList of attribute 'y': [1, 2, 3]

Arithmetic operators can be used in a similar way. If an AttrList is passed, different values are used for each
agent. Otherwise, the same value is used for all agents:

>>> agents.x = agents.x + agents.y
>>> agents.x
AttrList of attribute 'x': [2, 3, 4]

>>> agents.x *= 2
>>> agents.x
AttrList of attribute 'x': [4, 6, 8]

Boolean operators can be used to select a subset of agents:

>>> subset = agents(agents.x > 5)
>>> subset
AgentList [2 agents]

>>> subset.x
AttrList of attribute 'x': [6, 8]

append(object, /)
Append object to the end of the list.

clear()
Remove all items from list.

copy()
Return a shallow copy of the list.

count(value, /)
Return number of occurrences of value.

extend(iterable, /)
Extend list by appending elements from the iterable.

index(value, start=0, stop=9223372036854775807, /)
Return first index of value.

Raises ValueError if the value is not present.

insert(index, object, /)
Insert object before index.

pop(index=-1, /)
Remove and return item at index (default last).

Raises IndexError if list is empty or index is out of range.

random(n=1, generator=None)
Returns a new AgentList with a random subset of agents.

6.1. Agents 37

agentpy, Release 0.0.7.dev0

Parameters

• n (int, optional) – Number of agents (default 1).

• generator (random.Random, optional) – Random number generator. If none
is passed, the hidden instance of random is used.

remove(value, /)
Remove first occurrence of value.

Raises ValueError if the value is not present.

reverse()
Reverse IN PLACE.

select(selection)
Returns a new AgentList based on selection.

Parameters selection (list of bool) – List with same length as the agent list. Posi-
tions that return True will be selected.

shuffle(generator=None)
Shuffles the list randomly and returns itself.

Parameters generator (random.Random, optional) – Random number generator. If
none is passed, the hidden instance of random is used.

sort(var_key, reverse=False)
Sorts the list based on the var_key of its agents and returns itself.

6.2 Environments

6.2.1 Default

class Environment(model, agents=None, **kwargs)
Standard environment for agents (no topology).

This class can be used as a parent class for custom environment types. All agentpy model objects call the method
setup() after creation, and can access class attributes like dictionary items. To add new environments to a
model, use Model.add_env().

Parameters

• model (Model) – The model instance.

• agents (AgentList, optional) – Agents to be added to the environment (default
None).

• **kwargs – Will be forwarded to Environment.setup().

Variables

• model (Model) – The model instance.

• agents (AgentList) – The environments’ agents.

• p (AttrDict) – The models’ parameters.

• key (str) – The environments’ name.

• topology (str) – Topology of the environment.

• log (dict) – The environments’ recorded variables.

6.2. Environments 38

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/random.html#random.Random
https://docs.python.org/3/library/random.html#random.Random
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

agentpy, Release 0.0.7.dev0

add_agents(agents=1, agent_class=<class 'agentpy.objects.Agent'>, **kwargs)
Adds agents to the environment.

Parameters

• agents (int or AgentList, optional) – Either number of new agents to be
created or list of existing agents (default 1).

• agent_class (type, optional) – Type of new agents to be created if int is passed
for agents (default Agent).

• **kwargs – Forwarded to Agent.setup() if new agents are created (i.e. if an integer
number is passed to agents).

Returns List of the new agents.

Return type AgentList

property env
The objects first environment.

record(var_keys, value=None)
Records an objects variables.

Parameters

• var_keys (str or list of str) – Names of the variables to be recorded.

• value (optional) – Value to be recorded. The same value will be used for all var_keys.
If none is given, the values of object attributes with the same name as each var_key will
be used.

Examples

Record the existing attributes x and y of an object a:

a.record(['x', 'y'])

Record a variable z with the value 1 for an object a:

a.record('z', 1)

Record all variables of an object:

a.record(a.var_keys)

remove_agents(agents)
Removes agents from the environment.

setup(**kwargs)
This empty method is called automatically at the objects’ creation. Can be overwritten in custom sub-
classes to define initial attributes and actions.

Parameters **kwargs – Keyword arguments that have been passed to Agent or Model.
add_agents(). If the original setup method is used, they will be set as attributes of the
object.

6.2. Environments 39

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/stdtypes.html#str

agentpy, Release 0.0.7.dev0

Examples

The following setup initializes an object with three variables:

def setup(self, y):
self.x = 0 # Value defined locally
self.y = y # Value defined in kwargs
self.z = self.p.z # Value defined in parameters

property type
Class name of the object (str).

property var_keys
The object’s variables (list of str).

class EnvList(iterable=(), /)
List of environments.

Attribute calls and assignments are applied to all environments and return an AttrList with attributes of each
environment. This also works for method calls, which returns a list of return values. Arithmetic operators can
further be used to manipulate attributes, and boolean operators can be used to filter list based on attributes.

See AgentList for examples.

add_agents(*args, **kwargs)
Add the same agents to all environments in the list. See Environment.add_agents() for arguments
and keywords.

6.2.2 Networks

class Network(model, graph=None, agents=None, **kwargs)
Agent environment with a graph topology. Every node of the network represents an agent in the environment.
To add new network environments to a model, use Model.add_network().

This class can be used as a parent class for custom network types. All agentpy model objects call the method
setup() after creation, and can access class attributes like dictionary items. See Environment for general
properties of all environments.

Parameters

• model (Model) – The model instance.

• graph (networkx.Graph, optional) – The environments’ graph. Agents of the
same number as graph nodes must be passed. If none is passed, an empty graph is created.

• agents (AgentList, optional) – Agents of the network (default None). If a graph
is passed, agents are mapped to each node of the graph. Otherwise, new nodes will be
created for each agent.

• **kwargs – Will be forwarded to Network.setup().

Variables graph (networkx.Graph) – The environments’ graph.

add_agents(agents, agent_class=<class 'agentpy.objects.Agent'>, **kwargs)
Adds agents to the network environment as new nodes. See Environment.add_agents() for stan-
dard arguments.

property env
The objects first environment.

6.2. Environments 40

agentpy, Release 0.0.7.dev0

neighbors(agent, **kwargs)
Returns an AgentList of agents that are connected to the passed agent.

record(var_keys, value=None)
Records an objects variables.

Parameters

• var_keys (str or list of str) – Names of the variables to be recorded.

• value (optional) – Value to be recorded. The same value will be used for all var_keys.
If none is given, the values of object attributes with the same name as each var_key will
be used.

Examples

Record the existing attributes x and y of an object a:

a.record(['x', 'y'])

Record a variable z with the value 1 for an object a:

a.record('z', 1)

Record all variables of an object:

a.record(a.var_keys)

remove_agents(agents)
Removes agents from the environment.

setup(**kwargs)
This empty method is called automatically at the objects’ creation. Can be overwritten in custom sub-
classes to define initial attributes and actions.

Parameters **kwargs – Keyword arguments that have been passed to Agent or Model.
add_agents(). If the original setup method is used, they will be set as attributes of the
object.

Examples

The following setup initializes an object with three variables:

def setup(self, y):
self.x = 0 # Value defined locally
self.y = y # Value defined in kwargs
self.z = self.p.z # Value defined in parameters

property type
Class name of the object (str).

property var_keys
The object’s variables (list of str).

6.2. Environments 41

https://docs.python.org/3/library/stdtypes.html#str

agentpy, Release 0.0.7.dev0

6.2.3 Spatial grids

class Grid(model, shape, **kwargs)
Environment that contains agents with a spatial topology. Every location consists of an AgentList that can
hold zero, one, or more agents. To add new grid environments to a model, use Model.add_grid().

This class can be used as a parent class for custom network types. All agentpy model objects call the method
setup() after creation, and can access class attributes like dictionary items. See Environment for general
properties of all environments.

Parameters

• model (Model) – The model instance.

• shape (int or tuple of int) – Size of the grid. If an integer is given, this value is
taken as both the height and width for a two-dimensional grid. If a tuple is given, the length
of the tuple defines the number of dimensions, and the values in the tuple define the length
of each dimension.

• **kwargs – Will be forwarded to Grid.setup().

Variables

• grid (list of lists) – Matrix of AgentList.

• shape (tuple of int) – Length of each grid dimension.

add_agents(agents=1, agent_class=<class 'agentpy.objects.Agent'>, positions=None, ran-
dom=False, **kwargs)

Adds agents to the grid environment. See Environment.add_agents() for standard arguments.
Additional arguments are listed below.

Parameters

• positions (list of tuples, optional) – The positions of the added agents.
List must have the same length as number of agents to be added, and each entry must be a
tuple with coordinates. If none is passed, agents will fill up the grid systematically.

• random (bool, optional) – If no positions are passed, agents will be placed in
random locations instead of systematic filling (default False).

apply(func, *args, **kwargs)
Applies a function to all grid positions, and returns grid with return values.

attribute(attr_key, sum_values=True, empty=nan)
Returns a grid with the value of the attributes of the agents in each position.

Parameters

• attr_key (str) – Name of the attribute.

• sum_values (str, optional) – What to return in a position where there are multi-
ple agents. If True (default), the sum of attributes. If False, a list of attributes.

• empty (optional) – What to return for empty positions without agents (default
numpy.nan).

property env
The objects first environment.

get_agents(area=None)
Returns an AgentList with agents in the selected positions or area.

6.2. Environments 42

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

agentpy, Release 0.0.7.dev0

Parameters area (tuple of integers or tuples) – Area from which agents should
be gathered. Can either indicate a single position [x, y, . . .] or an area [(x_start, x_end),
(y_start, y_end), . . .].

items(area=None)
Returns iterator with tuples of style: (position, agents).

move_agent(agent, position)
Moves agent to new position.

Parameters

• agent (int or Agent) – Id or instance of the agent.

• position (list of int) – New position of the agent.

neighbors(agent, distance=1, diagonal=True)
Returns agent neighbors.

Parameters

• agent (int or Agent) – Id or instance of the agent.

• distance (int, optional) – Number of positions to cover in each direction.

• diagonal (bool, optional) – If True (default), diagonal neighbors are included. If
False, only direct neighbors are included (currently only works with distance == 1).

position(agent)
Returns position of a passed agent.

Parameters agent (int or Agent) – Id or instance of the agent.

positions(area=None)
Returns iterable of all grid positions in area.

Parameters area (list of tuples, optional) – Area of positions that should be re-
turned. If none is passed, the whole grid is selected. Style: [(x_start, x_end), (y_start,
y_end), . . .]

record(var_keys, value=None)
Records an objects variables.

Parameters

• var_keys (str or list of str) – Names of the variables to be recorded.

• value (optional) – Value to be recorded. The same value will be used for all var_keys.
If none is given, the values of object attributes with the same name as each var_key will
be used.

Examples

Record the existing attributes x and y of an object a:

a.record(['x', 'y'])

Record a variable z with the value 1 for an object a:

a.record('z', 1)

Record all variables of an object:

6.2. Environments 43

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

agentpy, Release 0.0.7.dev0

a.record(a.var_keys)

remove_agents(agents)
Removes agents from the environment.

setup(**kwargs)
This empty method is called automatically at the objects’ creation. Can be overwritten in custom sub-
classes to define initial attributes and actions.

Parameters **kwargs – Keyword arguments that have been passed to Agent or Model.
add_agents(). If the original setup method is used, they will be set as attributes of the
object.

Examples

The following setup initializes an object with three variables:

def setup(self, y):
self.x = 0 # Value defined locally
self.y = y # Value defined in kwargs
self.z = self.p.z # Value defined in parameters

property type
Class name of the object (str).

property var_keys
The object’s variables (list of str).

6.3 Agent-based models

class Model(parameters=None, run_id=None, scenario=None, **kwargs)
An agent-based model that can hold environments and agents.

This class can be used as a parent class for custom models. Class attributes can be accessed like dictionary items.
To define the procedures of a simulation, override the methods Model.setup(), Model.step(), Model.
update(), and Model.end(). See Model.run() for more information on the simulation procedure.

Variables

• name (str) – The models’ name.

• envs (EnvList) – The models’ environments.

• agents (AgentList) – The models’ agents.

• p (AttrDict) – The models’ parameters.

• t (int) – Current time-step of the model.

• log (dict) – The models’ recorded variables.

• output (DataDict) – Output data after simulation.

Parameters

• parameters (dict, optional) – Dictionary of model parameters. Recom-
mended types for parameters are int, float, str, list, numpy.integer, numpy.floating, and
numpy.ndarray. Other types might cause errors.

6.3. Agent-based models 44

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

agentpy, Release 0.0.7.dev0

• run_id (int, optional) – Number of current run (default None).

• scenario (str, optional) – Current scenario (default None).

• **kwargs – Will be forwarded to Model.setup()

add_agents(agents=1, agent_class=<class 'agentpy.objects.Agent'>, **kwargs)
Adds agents to the environment.

Parameters

• agents (int or AgentList, optional) – Either number of new agents to be
created or list of existing agents (default 1).

• agent_class (type, optional) – Type of new agents to be created if int is passed
for agents (default Agent).

• **kwargs – Forwarded to Agent.setup() if new agents are created (i.e. if an integer
number is passed to agents).

Returns List of the new agents.

Return type AgentList

add_env(env_class=<class 'agentpy.objects.Environment'>, **kwargs)
Creates a new environment.

add_grid(shape, **kwargs)
Creates a new environment with a spatial grid. Arguments are forwarded to Grid.

add_network(graph=None, agents=None, **kwargs)
Creates a new environment with a network. Arguments are forwarded to Network.

end()
Defines the model’s actions after the last simulation step. Can be overwritten and used for final calculations
and measures.

property env
The objects first environment.

get_obj(obj_id)
Return model object with obj_id (int).

measure(measure, value)
Records an evaluation measure.

property objects
The models agents and environments (list of objects).

record(var_keys, value=None)
Records an objects variables.

Parameters

• var_keys (str or list of str) – Names of the variables to be recorded.

• value (optional) – Value to be recorded. The same value will be used for all var_keys.
If none is given, the values of object attributes with the same name as each var_key will
be used.

6.3. Agent-based models 45

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/stdtypes.html#str

agentpy, Release 0.0.7.dev0

Examples

Record the existing attributes x and y of an object a:

a.record(['x', 'y'])

Record a variable z with the value 1 for an object a:

a.record('z', 1)

Record all variables of an object:

a.record(a.var_keys)

remove_agents(agents)
Removes agents from the environment.

run(steps=None, seed=None, display=True)
Executes the simulation of the model.

The simulation proceeds as follows. It starts by calling Model.setup() and Model.update(). Af-
ter that, Model.t is increased by 1 and Model.step() and Model.update() are called. This step
is repeated until the method Model.stop() is called or steps is reached. After the last step, Model.
end() is called.

Parameters

• steps (int, optional) – Maximum number of steps for the simulation to run. If
none is given, the parameter ‘Model.p.steps’ will be used. If there is no such parameter,
‘steps’ will be set to 1000.

• seed (int, optional) – Seed to set for random at the beginning of the simulation.
If none is given, the parameter ‘Model.p.seed’ will be used. If there is no such parameter,
no custom seed will be set.

• display (bool, optional) – Whether to display simulation progress (default True).

Returns Recorded model data, which can also be found in Model.output.

Return type DataDict

setup(**kwargs)
Defines the model’s actions before the first simulation step. Can be overwritten and used to initiate agents
and environments.

step()
Defines the model’s actions during each simulation step. Can be overwritten and used to set the models’
main dynamics.

stop()
Stops Model.run() during an active simulation.

property type
Class name of the object (str).

update()
Defines the model’s actions after setup and each simulation step. Can be overwritten and used for the
recording of dynamic variables.

property var_keys
The object’s variables (list of str).

6.3. Agent-based models 46

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/random.html#module-random
https://docs.python.org/3/library/functions.html#bool

agentpy, Release 0.0.7.dev0

6.4 Parameter sampling

sample(parameter_ranges, n, digits=None)
Creates a sample of different parameter combinations by seperating each range into ‘n’ values, using numpy.
linspace().

Parameters

• parameter_ranges (dict) – Dictionary of parameters. Only values that are given as a
tuple will be varied. Tuple must be of the following style: (min_value, max_value). If both
values are of type int, the output will be rounded and converted to int.

• n (int) – Number of values to sample per varied parameter.

• digits (int, optional) – Number of digits to round the output values to (default
None).

Returns List of parameter dictionaries

Return type list of dict

sample_discrete(parameter_ranges)
Creates a sample of different parameter combinations from all possible combinations within the passed param-
eter ranges.

Parameters parameter_ranges (dict) – Dictionary of parameters. Only values that are given
as a tuple will be varied. Tuples must be of the following style: (value1, value2, value3, . . .).

Returns List of parameter dictionaries

Return type list of dict

sample_saltelli(parameter_ranges, n, calc_second_order=True, digits=None)
Creates a sample of different parameter combinations, using SALib.sample.saltelli.sample().

Parameters

• parameter_ranges (dict) – Dictionary of parameters. Only values that are given as a
tuple will be varied. Tuple must be of the following style: (min_value, max_value). If both
values are of type int, the output will be rounded and converted to int.

• n (int) – The number of samples to generate, see SALib.sample.saltelli.
sample().

• calc_second_order (bool, optional) – Calculate second-order sensitivities (de-
fault True).

• digits (int, optional) – Number of digits to round the output values to (default
None).

Returns List of parameter dictionaries

Return type list of dict

6.4. Parameter sampling 47

https://numpy.org/doc/stable/reference/generated/numpy.linspace.html#numpy.linspace
https://numpy.org/doc/stable/reference/generated/numpy.linspace.html#numpy.linspace
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://salib.readthedocs.io/en/latest/api/SALib.sample.html#SALib.sample.saltelli.sample
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://salib.readthedocs.io/en/latest/api/SALib.sample.html#SALib.sample.saltelli.sample
https://salib.readthedocs.io/en/latest/api/SALib.sample.html#SALib.sample.saltelli.sample
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

agentpy, Release 0.0.7.dev0

6.5 Experiments

class Experiment(model_class, parameters=None, name=None, scenarios=None, iterations=1,
record=False, **kwargs)

Experiment for an agent-based model. Allows for multiple iterations, parameter samples, scenario com-
parison, and parallel processing. See Experiment.run() for standard simulations and Experiment.
interactive() for interactive output.

Parameters

• model_class (type) – The model class type that the experiment should use.

• parameters (dict or list of dict, optional) – Parameter dictionary or
sample (default None).

• name (str, optional) – Name of the experiment (default model.name).

• scenarios (str or list, optional) – Experiment scenarios (default None).

• iterations (int, optional) – Experiment repetitions (default 1).

• record (bool, optional) – Whether to keep the record of dynamic variables (default
False). Note that this does not affect evaluation measures.

• **kwargs – Will be forwarded to the creation of every model instance during the experi-
ment.

Variables output (DataDict) – Recorded experiment data

interactive(plot, *args, **kwargs)
Displays interactive output for Jupyter notebooks, using IPython and ipywidgets. A slider will be
shown for varied parameters. Every time a parameter value is changed on the slider, the experiment will
re-run the model and pass it to the ‘plot’ function.

Parameters

• plot – Function that takes a model instance as input and prints or plots the desired output..

• *args – Will be forwarded to ‘plot’.

• **kwargs – Will be forwarded to ‘plot’.

Returns Interactive output widget

Return type ipywidgets.HBox

Examples

The following example uses a custom model MyModel and creates a slider for the parameters ‘x’ and
‘y’, both of which can be varied interactively over 10 different values. Every time a value is changed, the
experiment will simulate the model with the new parameters and pass it to the plot function:

def plot(model):
Display interactive output here
print(model.output)

param_ranges = {'x': (0, 10), 'y': (0., 1.)}
sample = ap.sample(param_ranges, n=10)
exp = ap.Experiment(MyModel, sample)
exp.interactive(plot)

6.5. Experiments 48

https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://ipython.readthedocs.io/en/stable/api/generated/IPython.html#module-IPython

agentpy, Release 0.0.7.dev0

run(pool=None, display=True)
Executes a multi-run experiment.

The simulation will run the model once for each set of parameters and will repeat this process for the set
number of iterations. Parallel processing is possible if a pool is passed. Simulation results will be stored
in Experiment.output.

Parameters

• pool (multiprocessing.Pool, optional) – Pool of active processes for paral-
lel processing. If none is passed, normal processing is used.

• display (bool, optional) – Display simulation progress (default True).

Returns Recorded experiment data.

Return type DataDict

Examples

To run a normal experiment:

exp = ap.Experiment(MyModel, parameters)
results = exp.run()

To use parallel processing:

import multiprocessing as mp
if __name__ == '__main__':

exp = ap.Experiment(MyModel, parameters)
pool = mp.Pool(mp.cpu_count())
results = exp.run(pool)

6.6 Output data

class DataDict(*args, **kwargs)
Dictionary for recorded simulation data.

Generated by Model, Experiment, or load(). Dictionary items can be defined and accessed like attributes.
Attributes can differ from the standard ones listed below.

Variables

• log (dict) – Meta-data of the simulation (e.g. name, time-stamps, settings, etc.).

• parameters (dict, pandas.DataFrame, or DataDict) – Parameters that
have been used for the simulation.

• variables (pandas.DataFrame or DataDict)) – Dynamic variables, seperated
per object type, which can be recorded once per time-step with record().

• measures (pandas.DataFrame) – Evaluation measures, which can be recorded once
per run with measure().

arrange(variables=None, measures=None, parameters=None, obj_types='all', scenarios='all', in-
dex=False)

Combines and/or filters data based on passed arguments.

Parameters

6.6. Output data 49

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame

agentpy, Release 0.0.7.dev0

• variables (str or list of str, optional) – Variables to include in the
new dataframe (default None). If ‘all’, all are selected.

• measures (str or list of str, optional) – Measures to include in the new
dataframe (default None). If ‘all’, all are selected.

• parameters (str or list of str, optional) – Parameters to include in the
new dataframe (default None). If ‘fixed’, all fixed parameters are selected. If ‘varied’, all
varied parameters are selected. If ‘all’, all are selected.

• obj_types (str or list of str, optional) – Agent and/or environment
types to include in the new dataframe. Note that the selected object types will only be
included if at least one of their variables is declared in ‘variables’. If ‘all’, all are selected
(default).

• scenarios (str or list of str, optional) – Scenarios to include in the
new dataframe. If ‘all’, all are selected (default).

• index (bool, optional) – Whether to keep original multi-index structure (default
False).

Returns The arranged dataframe

Return type pandas.DataFrame

arrange_measures(variables=None, measures='all', parameters='varied', obj_types='all', scenar-
ios='all', index=False)

Returns a dataframe with measures and varied parameters. See DataDict.arrange() for further
information.

arrange_variables(variables='all', measures=None, parameters='varied', obj_types='all', scenar-
ios='all', index=False)

Returns a dataframe with variables and varied parameters. See DataDict.arrange() for further
information.

save(exp_name=None, exp_id=None, path='ap_output', display=True)
Writes data to directory {path}/{exp_name}_{exp_id}/. Works only for entries that are of type DataDict,
pandas.DataFrame, or serializable with JSON (int, float, str, dict, list). Numpy objects will be con-
verted to standard objects, if possible.

Parameters

• exp_name (str, optional) – Name of the experiment to be saved. If none is passed,
self.log[‘name’] is used.

• exp_id (int, optional) – Number of the experiment. If none is passed, a new id is
generated.

• path (str, optional) – Target directory (default ‘ap_output’).

• display (bool, optional) – Display saving progress (default True).

load(exp_name=None, exp_id=None, path='ap_output', display=True)
Reads output data from directory {path}/{exp_name}_{exp_id}/.

Parameters

• exp_name (str, optional) – Experiment name. If none is passed, the most recent
experiment is chosen.

• exp_id (int, optional) – Id number of the experiment. If none is passed, the highest
available id used.

• path (str, optional) – Target directory (default ‘ap_output’).

6.6. Output data 50

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

agentpy, Release 0.0.7.dev0

• display (bool, optional) – Display loading progress (default True).

Returns The loaded data from the chosen experiment.

Return type DataDict

6.7 Analysis

6.7.1 Sensitivity

sensitivity_sobol(output, param_ranges, measures=None, **kwargs)
Calculates Sobol Sensitivity Indices and adds them to the output, using SALib.analyze.sobol.
analyze().

Parameters

• output (DataDict) – The output of an experiment that was set to only one iteration
(default) and used a parameter sample that was generated with sample_saltelli().

• param_ranges (dict) – The same dictionary that was used for the generation of the
parameter sample with sample_saltelli().

• measures (str or list of str, optional) – The measures that should be
used for the analysis. If none are passed, all are used.

• **kwargs – Will be forwarded to SALib.analyze.sobol.analyze(). The kwarg
calc_second_order must be the same as for sample_saltelli().

6.7.2 Animations

animate(model, fig, axs, plot, steps=None, skip=0, fargs=(), **kwargs)
Returns an animation of the model simulation, using matplotlib.animation.FuncAnimation().

Parameters

• model (Model) – The model instance.

• fig (matplotlib.figure.Figure) – Figure for the animation.

• axs (matplotlib.axes.Axes or list) – Axis or list of axis of the figure.

• plot (function) – Function that takes (model, ax, *fargs) and creates the desired plots
on each axis at each time-step.

• steps (int, optional) – Maximum number of steps for the simulation to run. If none
is given, the parameter ‘Model.p.steps’ will be used. If there is no such parameter, ‘steps’
will be set to 1000.

• skip (int, optional) – Number of rounds to skip before the animation starts (default
0).

• fargs (tuple, optional) – Forwarded fo the plot function.

• **kwargs – Forwarded to matplotlib.animation.FuncAnimation().

6.7. Analysis 51

https://docs.python.org/3/library/functions.html#bool
https://salib.readthedocs.io/en/latest/api/SALib.analyze.html#SALib.analyze.sobol.analyze
https://salib.readthedocs.io/en/latest/api/SALib.analyze.html#SALib.analyze.sobol.analyze
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://salib.readthedocs.io/en/latest/api/SALib.analyze.html#SALib.analyze.sobol.analyze
https://matplotlib.org/api/_as_gen/matplotlib.figure.Figure.html#matplotlib.figure.Figure
https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple

agentpy, Release 0.0.7.dev0

Examples

An animation can be generated as follows:

def my_plot(model, ax):
pass # Call pyplot functions here

fig, ax = plt.subplots()
my_model = MyModel(parameters)
animation = ap.animate(my_model, fig, ax, my_plot)

One way to display the resulting animation object in Jupyter:

from IPython.display import HTML
HTML(animation.to_jshtml())

6.7.3 Plots

gridplot(grid, color_dict=None, convert=False, ax=None, **kwargs)
Visualizes values on a two-dimensional grid with matplotlib.pyplot.imshow().

Parameters

• grid (list of list) – Two-dimensional grid with values. numpy.nan values will be
plotted as empty patches.

• color_dict (dict, optional) – Dictionary that translates each value in grid to a
color specification.

• convert (bool, optional) – Convert values to rgba vectors, using matplotlib.
colors.to_rgba() (default False).

• ax (matplotlib.pyplot.axis, optional) – Axis to be used for plot.

• **kwargs – Forwarded to matplotlib.pyplot.imshow().

6.8 Other

class AttrDict(*args, **kwargs)
Dictionary where attribute calls are handled like item calls.

Examples

>>> ad = ap.AttrDict()
>>> ad['a'] = 1
>>> ad.a
1

>>> ad.b = 2
>>> ad['b']
2

6.8. Other 52

https://matplotlib.org/api/_as_gen/matplotlib.pyplot.imshow.html#matplotlib.pyplot.imshow
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://matplotlib.org/api/_as_gen/matplotlib.colors.to_rgba.html#matplotlib.colors.to_rgba
https://matplotlib.org/api/_as_gen/matplotlib.colors.to_rgba.html#matplotlib.colors.to_rgba
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.imshow.html#matplotlib.pyplot.imshow

agentpy, Release 0.0.7.dev0

class AttrList(*args, attr=None)
List of attributes from an AgentList.

Calls are forwarded to each entry and return a list of return values. Boolean operators are applied to each entry
and return a list of bools. Arithmetic operators are applied to each entry and return a new list. See AgentList
for examples.

6.8. Other 53

CHAPTER

SEVEN

COMPARISON

7.1 Agentpy vs. Mesa

An alternative framework for agent-based modeling in Python is Mesa. The stated goal of Mesa is “to be the Python
3-based counterpart to NetLogo, Repast, or MASON”. The focus of these frameworks is traditionally on spatial
environments, with an interface where one can observe live dynamics and adjust parameters while the model is running.

Agentpy, in contrast, is more focused on networks and multi-run experiments, with tools to generate and analyze
output data from these experiments. Agentpy further has a different model structure that is built around agent lists,
which allow for simple selection and manipulation of agent groups; and environments, which can contain agents but
also act as agents themselves.

To allow for an comparison of the syntax of each framework, here are two examples for a simple model of wealth
transfer, both of which realize exactly the same operations. More information on the two models can be found in the
documentation of each framework (link for Agentpy & Mesa).

54

https://mesa.readthedocs.io/
https://mesa.readthedocs.io/en/stable/tutorials/intro_tutorial.html#tutorial-description

agentpy, Release 0.0.7.dev0

Agentpy Mesa

import agentpy as ap

class MoneyAgent(ap.Agent):

def setup(self):
self.wealth = 1

def wealth_transfer(self):
if self.wealth == 0:

return
a = self.model.agents.random()
a.wealth += 1
self.wealth -= 1

class MoneyModel(ap.Model):

def setup(self):
self.add_agents(

self.p.agents, MoneyAgent)

def step(self):
self.agents.record('wealth')
self.agents.wealth_transfer()

Perform single run
parameters = {'agents': 10, 'steps': 10}
model = MoneyModel(parameters)
results = model.run()

Perform multiple runs
parameters['agents'] = (10, 500, int)
sample = ap.sample(parameters, n=49)

exp = ap.Experiment(
MoneyModel,
sample,
iterations=5,
record=True

)

results = exp.run()

from mesa import Agent, Model
from mesa.time import RandomActivation
from mesa.batchrunner import BatchRunner
from mesa.datacollection \

import DataCollector

class MoneyAgent(Agent):

def __init__(self, unique_id, model):
super().__init__(unique_id,

→˓model)
self.wealth = 1

def step(self):
if self.wealth == 0:

return
other_agent = self.random.choice(

self.model.schedule.agents)
other_agent.wealth += 1
self.wealth -= 1

class MoneyModel(Model):

def __init__(self, N):
self.running = True
self.num_agents = N
self.schedule = \

RandomActivation(self)
for i in range(self.num_agents):

a = MoneyAgent(i, self)
self.schedule.add(a)

self.collector = DataCollector(
agent_reporters={

"Wealth": "wealth"})

def step(self):
self.collector.collect(self)
self.schedule.step()

Perform single run
model = MoneyModel(10)
for i in range(10):

model.step()

Perform multiple runs
variable_params = {

"N": range(10, 500, 10)}

batch_run = BatchRunner(
MoneyModel,
variable_params,
iterations=5,
max_steps=10,
agent_reporters={"Wealth": "wealth"}

)

batch_run.run_all()
7.1. Agentpy vs. Mesa 55

agentpy, Release 0.0.7.dev0

Finally, the following table provides a comparison of the main features of each framework.

Feature Agentpy Mesa

Customizable objects Agent, Environment, Model Agent, Model

Container classes AgentList and EnvDict for
selection and manipulation
of agent and environment groups

Scheduler (see below)

Time management Custom activation order has to be
defined in the Model.step method

Multiple scheduler classes for
different activation orders

Supported topologies Spatial grid, networkx graph Spatial grid, network grid,
continuous space

Data recording Recording methods for variables
(of agents, environments, and
model) and evaluation measures

DataCollector class that can
collect variables of agents
and model

Parameter sampling Multiple sampling functions Custom sample has to be defined

Multi-run experiments Experiment class that supports
multiple iterations, parameter
samples, scenario comparison,
and parallel processing

BatchRunner class that supports
multiple iterations and parameter
samples

Output data DataDict class that can save,
load, and re-arrange output data

Multiple methods to generate
dataframes

Visualization Tools for plots and animations,
and interactive visualization in
Python

Extensive browser-based
visualization module

Analysis Tools for data arrangement and
sensitivity analysis

7.1. Agentpy vs. Mesa 56

CHAPTER

EIGHT

CHANGELOG

8.1 0.0.7.dev0

• A custom seed can now be set for Model.run() by either passing an argument or defining a parameter seed.

• Environment has a new optional argument agents to add existing agents at the creation of the environment.

• AgentList.random() and AgentList.shuffle() have a new optional argument generator for
custom instances of random.Random.

8.2 0.0.6 (January 2021)

• A new demonstration model Segregation has been added.

• All model objects now have a unique id number of type int. Methods that take an agent or environment as
an argument can now take either the instance or id of the object. The key attribute of environments has been
removed.

• Extra keyword arguments to Model and Experiment are now forwarded to Model.setup().

• Model.run() now takes an optional argument steps.

• EnvDict has been replaced by EnvList, which has the same functionalities as AgentList.

• Model objects now have a property env that returns the first environment of the object.

• Revision of Network. The argument map_to_nodes has been removed from Network.add_agents().
Instead, agents can be mapped to nodes by passing an AgentList to the agents argument of Model.
add_network(). Direct forwarding of attribute calls to Network.graph has been removed to avoid
confusion.

• New and revised methods for Grid:

– Agent.move_to() and Agent.move_by() can be used to move agents.

– Grid.items() returns an iterator of position and agent tuples.

– Grid.get_agents() returns agents in selected position or area.

– Grid.position() returns the position coordinates for an agent.

– Grid.positions() returns an iterator of position coordinates.

– Grid.attribute() returns a nested list with values of agent attributes.

– Grid.apply() returns nested list with return values of a custom function.

– Grid.neighbors() has new arguments diagonal and distance.

57

https://docs.python.org/3/library/random.html#random.Random
https://docs.python.org/3/library/functions.html#int

agentpy, Release 0.0.7.dev0

• gridplot() now takes a grid of values as an input and can convert them to rgba.

• animate() now takes a model instance as an input instead of a class and parameters.

• sample() and sample_saltelli() will now return integer values for parameters if parameter ranges are
given as integers. For float values, a new argument digits can be passed to round parameter values.

• The function interactive() has been removed, and is replaced by the new method Experiment.
interactive().

• sobol_sensitivity() has been changed to sensitivity_sobol().

8.3 0.0.5 (December 2020)

• Experiment.run() now supports parallel processing.

• New methods DataDict.arrange_variables() and DataDict.arrange_measures(), which
generate a dataframe of recorded variables or measures and varied parameters.

• Major revision of DataDict.arrange(), see new description in the documentation.

• New features for AgentList: Arithmethic operators can now be used with AttrList.

8.4 0.0.4 (November 2020)

• First major release.

8.3. 0.0.5 (December 2020) 58

CHAPTER

NINE

CONTRIBUTE

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.
You can contribute in many ways:

9.1 Types of contributions

9.1.1 Report bugs

Report bugs at https://github.com/JoelForamitti/agentpy/issues.

If you are reporting a bug, please include:

• Your operating system name and version.

• Any details about your local setup that might be helpful in troubleshooting.

• Detailed steps to reproduce the bug.

9.1.2 Fix bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help wanted” is open to whoever wants
to implement it.

9.1.3 Implement features

Look through the GitHub issues and discussion forum for features. Anything tagged with “enhancement” and “help
wanted” is open to whoever wants to implement it.

9.1.4 Write documentation

Agentpy could always use more documentation, whether as part of the official agentpy docs, in docstrings, or even on
the web in blog posts, articles, and such.

59

https://github.com/JoelForamitti/agentpy/issues
https://github.com/JoelForamitti/agentpy/discussions

agentpy, Release 0.0.7.dev0

9.1.5 Submit feedback

The best way to send feedback is to write in the agentpy discussion forum at https://github.com/JoelForamitti/agentpy/
discussions.

If you are proposing a feature:

• Explain in detail how it would work.

• Keep the scope as narrow as possible, to make it easier to implement.

• Remember that this is a volunteer-driven project, and that contributions are welcome :)

9.2 How to contribute

Ready to contribute? Here’s how to set up agentpy for local development.

1. Fork the agentpy repository on GitHub: https://github.com/JoelForamitti/agentpy

2. Clone your fork locally:

$ git clone git@github.com:your_name_here/agentpy.git

3. Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up
your fork for local development:

$ mkvirtualenv agentpy
$ cd agentpy/
$ pip install -e .['dev']

4. Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

5. When you’re done making changes, check that your changes pass the tests and that the new features are covered
by the tests:

$ coverage run -m pytest
$ coverage report

6. Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

7. Submit a pull request through the GitHub website.

9.2. How to contribute 60

https://github.com/JoelForamitti/agentpy/discussions
https://github.com/JoelForamitti/agentpy/discussions
https://github.com/JoelForamitti/agentpy

agentpy, Release 0.0.7.dev0

9.3 Pull request guidelines

Before you submit a pull request, check that it meets these guidelines:

1. The pull request should include tests. For more information, check out the tests directory and https://docs.pytest.
org/.

2. If the pull request adds functionality, the docs should be updated. Put your new functionality into a function
with a docstring, and add the feature to docs/changelog.rst.

3. The pull request should pass the automatic tests on travis-ci. Check https://travis-ci.com/JoelForamitti/agentpy/
pull_requests and make sure that the tests pass for all supported Python versions.

9.3. Pull request guidelines 61

https://docs.pytest.org/
https://docs.pytest.org/
https://travis-ci.com/JoelForamitti/agentpy/pull_requests
https://travis-ci.com/JoelForamitti/agentpy/pull_requests

CHAPTER

TEN

ABOUT

Agentpy has been created by Joël Foramitti and is available under the open-source BSD 3-Clause license. Source files
can be found on the GitHub repository.

This project has benefited from an ERC Advanced Grant from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (grant agreement n° 741087).

Special thanks for their feedback and support go to Ivan Savin and Jeroen C.J.M van den Bergh.

Parts of this package where created with Cookiecutter and the audreyr/cookiecutter-pypackage project template.

62

https://github.com/JoelForamitti/agentpy/blob/master/LICENSE
https://github.com/joelforamitti/agentpy
https://github.com/audreyr/cookiecutter
https://github.com/audreyr/cookiecutter-pypackage

INDEX

A
add_agents() (Environment method), 38
add_agents() (EnvList method), 40
add_agents() (Grid method), 42
add_agents() (Model method), 45
add_agents() (Network method), 40
add_env() (Model method), 45
add_grid() (Model method), 45
add_network() (Model method), 45
Agent (class in agentpy), 34
AgentList (class in agentpy), 36
animate() (in module agentpy), 51
append() (AgentList method), 37
apply() (Grid method), 42
arrange() (DataDict method), 49
arrange_measures() (DataDict method), 50
arrange_variables() (DataDict method), 50
AttrDict (class in agentpy), 52
attribute() (Grid method), 42
AttrList (class in agentpy), 52

C
clear() (AgentList method), 37
copy() (AgentList method), 37
count() (AgentList method), 37

D
DataDict (class in agentpy), 49
delete() (Agent method), 34

E
end() (Model method), 45
enter() (Agent method), 34
env() (Agent property), 34
env() (Environment property), 39
env() (Grid property), 42
env() (Model property), 45
env() (Network property), 40
Environment (class in agentpy), 38
EnvList (class in agentpy), 40
exit() (Agent method), 34
Experiment (class in agentpy), 48

extend() (AgentList method), 37

G
get_agents() (Grid method), 42
get_obj() (Model method), 45
Grid (class in agentpy), 42
gridplot() (in module agentpy), 52

I
index() (AgentList method), 37
insert() (AgentList method), 37
interactive() (Experiment method), 48
items() (Grid method), 43

L
load() (in module agentpy), 50

M
measure() (Model method), 45
Model (class in agentpy), 44
move_agent() (Grid method), 43
move_by() (Agent method), 34
move_to() (Agent method), 35

N
neighbors() (Agent method), 35
neighbors() (Grid method), 43
neighbors() (Network method), 40
Network (class in agentpy), 40

O
objects() (Model property), 45

P
pop() (AgentList method), 37
position() (Agent method), 35
position() (Grid method), 43
positions() (Grid method), 43

R
random() (AgentList method), 37

63

agentpy, Release 0.0.7.dev0

record() (Agent method), 35
record() (Environment method), 39
record() (Grid method), 43
record() (Model method), 45
record() (Network method), 41
remove() (AgentList method), 38
remove_agents() (Environment method), 39
remove_agents() (Grid method), 44
remove_agents() (Model method), 46
remove_agents() (Network method), 41
reverse() (AgentList method), 38
run() (Experiment method), 48
run() (Model method), 46

S
sample() (in module agentpy), 47
sample_discrete() (in module agentpy), 47
sample_saltelli() (in module agentpy), 47
save() (DataDict method), 50
select() (AgentList method), 38
sensitivity_sobol() (in module agentpy), 51
setup() (Agent method), 36
setup() (Environment method), 39
setup() (Grid method), 44
setup() (Model method), 46
setup() (Network method), 41
shuffle() (AgentList method), 38
sort() (AgentList method), 38
step() (Model method), 46
stop() (Model method), 46

T
type() (Agent property), 36
type() (Environment property), 40
type() (Grid property), 44
type() (Model property), 46
type() (Network property), 41

U
update() (Model method), 46

V
var_keys() (Agent property), 36
var_keys() (Environment property), 40
var_keys() (Grid property), 44
var_keys() (Model property), 46
var_keys() (Network property), 41

Index 64

	Introduction
	Installation
	Dependencies
	Development

	Overview
	Creating models
	Using agents
	Using environments
	Recording data
	Running a simulation
	Multi-run experiments
	Output and analysis

	User Guide
	Stochastic processes and reproducibility

	Model Library
	Wealth transfer
	Virus spread
	Segregation
	Forest fire
	Button network

	API Reference
	Agents
	Environments
	Agent-based models
	Parameter sampling
	Experiments
	Output data
	Analysis
	Other

	Comparison
	Agentpy vs. Mesa

	Changelog
	0.0.7.dev0
	0.0.6 (January 2021)
	0.0.5 (December 2020)
	0.0.4 (November 2020)

	Contribute
	Types of contributions
	How to contribute
	Pull request guidelines

	About
	Index

