Parameter sampling¶
-
sample
(parameter_ranges, n, digits=None)[source]¶ Creates a sample of different parameter combinations by seperating each range into ‘n’ values, using
numpy.linspace()
.- Parameters
parameter_ranges (dict) – Dictionary of parameters. Only values that are given as a tuple will be varied. Tuple must be of the following style: (min_value, max_value). If both values are of type int, the output will be rounded and converted to int.
n (int) – Number of values to sample per varied parameter.
digits (int, optional) – Number of digits to round the output values to (default None).
- Returns
List of parameter dictionaries
- Return type
list of dict
-
sample_discrete
(parameter_ranges)[source]¶ Creates a sample of different parameter combinations from all possible combinations within the passed parameter ranges.
- Parameters
parameter_ranges (dict) – Dictionary of parameters. Only values that are given as a tuple will be varied. Tuples must be of the following style: (value1, value2, value3, …).
- Returns
List of parameter dictionaries
- Return type
list of dict
-
sample_saltelli
(parameter_ranges, n, calc_second_order=True, digits=None)[source]¶ Creates a sample of different parameter combinations, using
SALib.sample.saltelli.sample()
.- Parameters
parameter_ranges (dict) – Dictionary of parameters. Only values that are given as a tuple will be varied. Tuple must be of the following style: (min_value, max_value). If both values are of type int, the output will be rounded and converted to int.
n (int) – The number of samples to generate, see
SALib.sample.saltelli.sample()
.calc_second_order (bool, optional) – Calculate second-order sensitivities (default True).
digits (int, optional) – Number of digits to round the output values to (default None).
- Returns
List of parameter dictionaries
- Return type
list of dict